5,326 research outputs found

    Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217

    Get PDF
    As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of \sim 20^{\circ}. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The outflow is spatially resolved in the [SII]λλ6716,6731[SII]\lambda \lambda 6716,6731 lines and is detected out to \sim 1\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity asymmetry is less pronounced with respect to our previous study. Using thirteen different accretion tracers we measure log(M˙acc\dot{M}_{acc}) [Msun_{sun}/yr]= -10.6 ±\pm 0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI 217 outflow M˙out\dot{M}_{out} was derived for a range of values of Av_{v}, up to a value of Av_{v} = 2.5 mag estimated for the source extinction. The logarithm of the mass outflow (M˙out\dot{M}_{out}) was estimated in the range -11.7 to -11.1 for both jets combined. Thus M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc} [\Msun/yr] lies below the maximum value predicted by magneto-centrifugal jet launching models. Finally, both model fitting of the Balmer decrements and spectro-astrometric analysis of the Hα\alpha line show that the bulk of the H I emission comes from the accretion flow.Comment: accepted by Astronomy & Astrophysic

    National Inquiry on Bushfire Mitigation and Management

    Get PDF
    Bushfires are an inherent part of the Australian environment. We cannot prevent them, but we can minimise the risks they pose to life, property and infrastructure, production systems, and the environment. Australia has a large and very capable force of volunteer and career firefighters, advanced firefighting technologies, and significant firefighting resources. But the geographical scale of our country, the large and expanding rural–urban interface, and the potential for rapid bushfire development and spread under adverse weather conditions mean that individual Australians cannot rely solely on fire agencies to protect their lives and property from bushfires. Bushfires have a fundamental and irreplaceable role in sustaining many of Australia’s natural ecosystems and ecological processes and are a valuable tool for achieving land management objectives. However, if they are too frequent or too infrequent, too severe or too mild, or mistimed, they can erode ecosystem health and biodiversity and compromise other land management goals. We have been learning to live with fire since the first Australians arrived on our continent. We need to continue, and enrich, that learning process in contemporary circumstances and be able to adapt our planning and responses to change. This report seeks to help all Australians meet these challenges

    A segmentation approach to delineate zones for differential nitrogen intervention.

    Get PDF
    Multi-source and -temporal data integration is expected to support the delineation of within-field management zones that may better conform to unique combinations of crop yield variations. This work addresses the evaluation of zone delineation approaches based on image classification and segmentation methods. An object based segmentation is introduced using ancillary data from multivariate analysis of yield maps. A simple economic evaluation is conducted to compare delineation methods aiming variable-rate Nitrogen applications. Advantages and penalties are suggested for 2, 3, and 4 management zones. Results show that a procedure combining multiresolution, watershed and region grow segmentation algorithms has systematically resulted in greater net worth. It is suggested that segmentation methods have potential application for zone management delineations supporting contiguous patter

    Statistical Searches for Microlensing Events in Large, Non-Uniformly Sampled Time-Domain Surveys: A Test Using Palomar Transient Factory Data

    Get PDF
    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its \sim20,000deg220,000 \mathrm{deg}^2 footprint. While the median 7.26deg27.26 \mathrm{deg}^2 PTF field has been imaged \sim40 times in \textit{R}-band, \sim2300deg22300 \mathrm{deg}^2 have been observed >>100 times. We use PTF data to study the trade-off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >>10 RR-band observations, 1.1×1091.1\times10^9 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.Comment: 13 pages, 14 figures; accepted for publication in ApJ. fixed author lis

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    Stochastic Background Search Correlating ALLEGRO with LIGO Engineering Data

    Full text link
    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run.Comment: 8 pages, 2 encapsulated PostScript figures, uses IOP class files, submitted to the proceedings of the 7th Gravitational Wave Data Analysis Workshop (which will be published in Classical and Quantum Gravity

    Periodic Orbit Quantization beyond Semiclassics

    Full text link
    A quantum generalization of the semiclassical theory of Gutzwiller is given. The new formulation leads to systematic orbit-by-orbit inclusion of higher \hbar contributions to the spectral determinant. We apply the theory to billiard systems, and compare the periodic orbit quantization including the first \hbar contribution to the exact quantum mechanical results.Comment: revte

    Bohr-Sommerfeld Quantization of Periodic Orbits

    Get PDF
    We show, that the canonical invariant part of \hbar corrections to the Gutzwiller trace formula and the Gutzwiller-Voros spectral determinant can be computed by the Bohr-Sommerfeld quantization rules, which usually apply for integrable systems. We argue that the information content of the classical action and stability can be used more effectively than in the usual treatment. We demonstrate the improvement of precision on the example of the three disk scattering system.Comment: revte

    An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate

    Full text link
    There is wide agreement that Type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for ~1e7 yr before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of ~30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than ~5 per cent of Type Ia supernovae in early type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.Comment: 10 pages, 1 tabl
    corecore