
ar
X

iv
:c

ha
o-

dy
n/

95
11

00
3v

2 
 1

7 
N

ov
 1

99
5

Bohr-Sommerfeld Quantization of Periodic Orbits
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Abstract

We show, that the canonical invariant part of h̄ corrections to the Gutzwiller

trace formula and the Gutzwiller-Voros spectral determinant can be com-

puted by the Bohr-Sommerfeld quantization rules, which usually apply for

integrable systems. We argue that the information content of the classical

action and stability can be used more effectively than in the usual treatment.

We demonstrate the improvement of precision on the example of the three

disk scattering system.
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Gutzwiller trace formula for chaotic systems is often presented as the counterpart of
the Bohr-Sommerfeld (BS) quantization of integrable systems [1]. Consequently, corrections
of the trace formula proportional with powers of h̄ are usually associated with quantum
corrections [3]. In this letter we would like to show, that a part of h̄ corrections is not
connected to deep quantum effects and they can be calculated with some precision from
purely semiclassical BS arguments. Then we propose a new trace formula and spectral
determinant which is more precise than the usual trace formula although it uses only the
linear stability and action as an input data, just like the original trace formula.

First we would like to introduce periodic orbits from an unusual point of view. Chaotic
and integrable systems on the level of periodic orbits are in fact not as different from each
other as we might think. If we start orbits in the neighborhood of a periodic orbit and look
at the picture on the Poincaré section we can see a regular pattern. For stable periodic
orbits the points form small ellipses around the center and for unstable orbits they form
hyperbola. The motion close to a periodic orbits is regular in both cases. This is due to
the fact, that we can linearize the Hamiltonian close to a periodic orbit, and linear systems
are always integrable. Based on Poincaré’s idea, Arnold and coworkers have shown [4], that
the Hamiltonian close to a periodic orbit can be brought to a very practical form. One has
to introduce new coordinates: one which is parallel with the orbit (x‖) and others which
are orthogonal. In the orthogonal directions we get linear equations. These equations with
x‖ dependent rescaling can be transformed into normal coordinates so that we get tiny
oscillators, or inverse oscillators, in the new coordinates with constant, frequencies. In the
new coordinates, the Hamiltonian is

H0(x‖, p‖, xn, pn) =
1

2
p2‖ + U(x‖) +

d−1
∑

n=1

1

2
(p2n ± ω2

nx
2
n), (1)

which is one possible normal form of the Hamiltonian in the neighborhood of a periodic
orbit. The ± sign denotes, that for stable modes the oscillator potential is positive, while
for an unstable mode it is negative. Since the eigenvalues of the monodromy or Jacobi
stability matrix of a periodic orbit are invariant under the transformations we made sofar,
the oscillator frequencies can be expressed for unstable modes with the Ljapunov exponent
of the orbit

ωn = ln |Λp,n|/Tp, (2)

where Λp,n is the expanding eigenvalue of the Jacobi matrix and Tp is the period of the orbit.
Also, for stable directions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp. (3)

The Hamiltonian (1) is integrable and can be semiclassically quantized by the BS rules.
The result of the BS quantization for the oscillators gives the energy spectra

En = h̄ωn

(

jn +
1

2

)

for stable modes, (4)

En = −ih̄ωn

(

jn +
1

2

)

for unstable modes,
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where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable and sn = −i
for unstable directions. The parallel mode can be quantized implicitly trough the classical
action function :

1

2π

∮

p‖dx‖ =
1

2π
S‖(Em) = h̄

(

m+
µpπ

2

)

, (5)

where µp is the Maslov index of the motion in the parallel direction. This latter condition
can be rewritten in the equivalent form

(1− eiS‖(Em)/h̄−iµpπ/2) = 0. (6)

The eigenenergies of a semiclassically quantized periodic orbit [5] are all the possible energies

E = Em +
d−1
∑

n=1

En. (7)

This relation allows us to change in (6) Em with the full energy minus the oscillator energies
Em = E −∑

nEn. All the possible eigenenergies of the periodic orbit then are the zeroes of
the expression

∆BSH
p (E) =

∏

j1,...,jd−1

(1− eiS‖(E−
∑

n
h̄snωn(jn+1/2))/h̄−iµpπ/2). (8)

Now, we show how one can derive the Gutzwiller trace formula from (8). We have to
expand the action around E to first order S‖(E + ǫ) ≈ Sp(E) + Tp(E)ǫ, where Tp(E) and
Sp(E) are the period and the action of the orbit, and we have to use the relations of ω-s and
the eigenvalues of the Jacobi matrix, we get

∆p(E) =
∏

j1,...,jd−1

(

1− eiSp(E)/h̄−iνpπ/2

∏

n |Λp,n|1/2Λjn
p,n

)

, (9)

where νp is the Maslov index of the orbit. Now, if we have many primitiv orbits and we
would like to construct a function formally, which is zero whenever the energy coincides with
the BS quantized energy of one of the periodic orbits, we have to take the product of these
determinants:

∆(E) =
∏

p

∆p(E). (10)

This is exactly the Gutzwiller-Voros [10,2] spectral determinant, which is the regularized
semiclassical expression for the spectral determinant

∆(E) = det(E − Ĥ)

of the Hamilton operator of the system. The logarithmic derivative of this quantity gives the
trace of the Green’s function and the oscillating part of the trace formula in semiclassical
approximation

TrG(q′, q′, E) = − d

dE
log∆(E) ≈ 1

ih̄

∑

p,r

Tp(E)
eirSp(E)−irνpπ/2

| det(1− Jr
p )|1/2

, (11)
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where the summation goes for the primitive periodic orbits and their repetitions, Jp is
the monodromy or Jacobi matrix of the periodic orbit. The construction of the spectral
determinant (8) described above is not unique in the sense, that we can multiply each
periodic orbit’s spectral determinant with a smooth function which does not have zeroes
and poles on the complex energy plane. However, the logarithmic derivative of such a
smooth function will not contribute to the oscillating part of the trace formula and can be
considered as a part of its smooth part.

From this derivation we can see, that the Gutzwiller trace formula is recovered only if
we linearize the action. This is a very bad approximation for low energies, where the ratio
Tp(E)/Sp(E) ∼ 1/E, is large. In that regime we might expect that the spectral determinant
(8) works better than the Gutzwiller-Voros formula (9).

That this is the case, we have checked on the example of the three disk scattering system
[13,14] at the standard parameters of disk separation 6 compared to the radius of the disks.
This is a billiard system, where the parallel action is S(E) = kLp, where k =

√
E is the

wave number (with mass unit m = 1/2 ) and Lp is the geometrical length of the the orbit.
There is only one unstable oscillator mode with oscillator energies

Ep,j(k) = −ih̄
2k log |Λp|

Lp

(j + 1/2).

The new spectral determinant as a function of the wave number is

∆BSH(k) =
∏

p

∏

j

(1− eiLp

√
k2−Ep,j(k)/h̄−iνpπ/2). (12)

If we expand the exponent in h̄ we can see that it gives corrections to the leading action and
stability term. We can compare the first h̄ correction with the exact h̄ correction computed
in Ref. [3] and Ref. [6]. The h̄ corrected spectral determinant with the exact correction is
defined as

∆ex(k) =
∏

p

∏

j

(1− eikLp/h̄−iνpπ/2−(j+1/2) ln |Λp|+ih̄C
ex(1)
p,j

/k+...), (13)

where C
ex(1)
p,j the exact first h̄ correction. The first correction coming from (12) is

C
BSH(1)
p,j = (j + 1/2)2(ln |Λp|)2/Lp.

On Fig. 1 we can see, that this accounts for about 80% of the exact correction. As we will
see later, this is not the whole first h̄ correction which comes form the BS quantization, it il-
lustrates only that by using (12) we already take into account a whole series of h̄ corrections.
We also compared the exact quantum mechanical resonances [7] with those computed [9]
from the Gutzwiller-Voros spectral determinant and with the Gutzwiller-Voros spectral de-
terminant with the first h̄ correction [6] and plotted the results on the complex wave number
plane. We can see on Fig. 2, that for large k the Gutzwiller-Voros spectral determinant, its
h̄ corrected version and the new BS type expressions approximate the resonances accurately,
with a few percent error. However, the lowest resonances are approximated better by the
new expression and the h̄ corrected Gutzwiller-Voros determinant is even worse than the
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uncorrected. This is because the Gutzwiller-Voros determinant and its corrected version are
asymptotic series expanded in the powers of 1/k, while the new formula approximates the
eigenenergies of the individual periodic orbits for small values of k also correctly. We can
conclude, that by using (12) or in general (8) we can considerably improve the Gutzwiller-
Voros theory for low energies by using exactly the same input data (stability, action, Maslov
index) in a more economic way.

The semiclassical analysis outlined above can be done in a more general framework by
the systematic application of the normal form theory of Birkhoff and Gustavson. This can
be considered as a generalization of the normal form quantization of Swimm, Delos and
Robnik [8] from equilibrium points to the periodic orbits. The full Hamiltonian expanded
close to a periodic orbit can be written as the ‘harmonic’ plus an ‘anharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) +HA(x‖, xn, pn), (14)

where the anharmonic part can be written as a sum of homogeneous polynomials of xn and
pn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∞
∑

k=3

Hk(x‖, xn, pn), (15)

Hk(x‖, xn, pn) =
∑

∑

n
ln+mn=k

hk
ln,mn

(x‖)x
ln
n p

mn

n . (16)

We can carry out the canonical transformations introduced by Birkhoff and Gustavson
[11,8,1] and the Hamiltonian can be brought to normal form in the orthogonal directions.
The x‖ coordinate plays the role of a parameter. After the transformation up to order N
the Hamiltonian (16) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1) +
N
∑

j=2

U j(x‖, τ1, ..., τd−1) + h.o.t, (17)

where U j is a j-th order homogeneous polynomial of τ -s with x‖ dependent coefficients and
τn = 1

2
(p2n ± ω2

nx
2
n) is the Hamiltonian function of the original oscillator. This Hamiltonian

truncated at order N is integrable, the nonintegrability is pushed to the higher order terms
(h.o.t) . The orthogonal part can then be BS quantized by quantizing the individual oscil-
lators, replacing τ -s as we did in (5). This leads to a one dimensional effective potential
indexed by the quantum numbers j1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1

2
p2‖ + U(x‖) +

d−1
∑

n=1

h̄snωn(jn + 1/2) + (18)

+
N
∑

k=2

Uk(x‖, h̄s1ω1(j1 + 1/2), h̄s2ω2(j2 + 1/2), ..., h̄sd−1ωd−1(jd−1 + 1/2)),

where jn can be any non-negative integer. The term with index k is proportional with h̄k

due to the homogeneity of the polynomials. The parallel mode now can be BS quantized
for any given set of j-s
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Sp(E, j1, ..., jd−1) =
∮

p‖dx‖ = (19)

=
∮

dx‖

√

√

√

√2

(

E −
d−1
∑

n=1

h̄snωn(jn + 1/2)− Ueff(x‖, j1, ..., jd−1)

)

= 2πh̄
(

m+
µpπ

2

)

,

where Ueff contains all the x‖ dependent terms of the Hamiltonian. The spectral determinant
becomes

∆BSA(E) =
∏

p

∏

j1,...,jd−1

(1− eiSp(E,j1,...,jd−1)/h̄−iνpπ/2). (20)

Here one can see, that the indices j, which were just auxiliary indices in in the Gutzwiller-
Voros approach, now can be interpreted as ”orthogonal quantum numbers”. Formally, the
integrability of the Hamiltonian is maintained in each level of the approximation and the
Ruelle [12] type zeta functions

ζ−1
j1,j2,...,jd−1

(E) =
∏

p

(1− eiSp(E,j1,...,jd−1)/h̄−iνπ/2),

corresponding to a given j configuration, can be interpreted as the factorization of the total
spectral determinant according to subspaces with fixed quantum numbers. If we expand Sp

in the exponent in the powers of h̄ Sp =
∑N

k=0 h̄
kSk, we get corrections to the Gutzwiller-

Voros spectral determinant in all powers of h̄. There is a very attracting feature of this
semiclassical expansion. h̄ in Sp shows up only in the combination h̄snωn(jn + 1/2). A
term proportional with h̄k can only be a homogeneous expression of the oscillator energies
snωn(jn + 1/2). We mention here Ref. [15] as a good example, where the superiority of the
method outlined here can be demonstrated above the pure periodic orbit theory and the
comparison of h̄ expansion and BS quantization can be clearly studied.

The h̄ corrections derived here are doubly semiclassical, since they give semiclassical
corrections to the semiclassical approximation. What can quantum mechanics add to this
? Since quantum mechanics is not invariant for canonical transformations, the derived h̄
corrections give only the leading behaviour of corrections and the exact corrections can be
computed by other methods. The Birkhoff-Gustavson transformations should be replaced
by quantum perturbation theory and semiclassical quantum numbers should be replaced
by exact quantum numbers. This has been done in Ref. [6] which we are going to publish
elsewhere. We don’t think, that the semiclassical determination of h̄ corrections in higher
orders is a very practical way to compute them, but in predicting the general structure of
the corrections it helps us to understand their general behaviour and later probably to sum
them up in order to get meaningful formulas also for low energies.

The author thanks the discussions with E. Bogomolny, O. Bohigas, P. Cvitanović, P.
E. Rosenqvist, N. Whelan and A. Wirzba. This project has been financed by the EHCM
PECO, OTKA F17166 and T17493.
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FIGURES

FIG. 1. Comparison between the exact h̄ corrections and the BS approximation. We have

taken all the periodic orbits p of the three disk system up to 9 bounces. We computed the first

h̄ correction for j = 0 (Cex
p,0). Then we computed the quantity (ln |Λp|)2/4Lp, which correction

comes from the lowest order harmonic approximation of the BS quantization of the periodic orbit

(C
BSH(1)
p,0 ). We plotted here this value versus the exact h̄ correction for each periodic orbit p. We

can see, that for the 22 shortest orbits they are almost linearly correlated and about 80% of the

exact correction comes from this effect. The rest is coming from the anharmonicity and from deep

quantum effects.

FIG. 2. Complex resonances of the 3 disk scattering system. The quantum calculation, the

Gutzwiller-Voros approximation, the Gutzwiller-Voros approximation with one h̄ correction added

and the BS spectral determinant in harmonic approximation (BSH) . We used all the periodic orbits

up to 9 bounces. For small Rek resonances the h̄ correction breaks down, while our approximation

is deviating the right way from the Gutzwiller-Voros result.

8



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

B
oh

r-
S

om
m

er
fe

ld

exact

Bohr-Sommerfeld vs. exact



-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 2 4 6 8 10 12 14 16 18

Im
 k

Re k

quantum
Gut-Voros

Gut-Voros with 1 quantum corr
Bohr-Sommerfeld


