13,514 research outputs found

    A globally accurate theory for a class of binary mixture models

    Full text link
    Using the self-consistent Ornstein-Zernike approximation (SCOZA) results for the 3D Ising model, we obtain phase diagrams for binary mixtures described by decorated models. We obtain the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.Comment: 16 pages, 10 figure

    Evaluation of a semi-active gravity gradient system. Volume I - Technical summary

    Get PDF
    Semi-active gravity gradient system for attitude control of earth oriented spacecraf

    Evaluation of a semi-active gravity gradient system. Volume II - Appendices

    Get PDF
    Evaluation of semi-active gravity gradient system - appendixe

    Arctic marine climate of the early nineteenth century

    Get PDF
    The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810 - 1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards. © 2010 Author(s)

    Gravitational Geons Revisited

    Get PDF
    A careful analysis of the gravitational geon solution found by Brill and Hartle is made. The gravitational wave expansion they used is shown to be consistent and to result in a gauge invariant wave equation. It also results in a gauge invariant effective stress-energy tensor for the gravitational waves provided that a generalized definition of a gauge transformation is used. To leading order this gauge transformation is the same as the usual one for gravitational waves. It is shown that the geon solution is a self-consistent solution to Einstein's equations and that, to leading order, the equations describing the geometry of the gravitational geon are identical to those derived by Wheeler for the electromagnetic geon. An appendix provides an existence proof for geon solutions to these equations.Comment: 18 pages, ReVTeX. To appear in Physical Review D. Significant changes include more details in the derivations of certain key equations and the addition of an appendix containing a proof of the existence of a geon solution to the equations derived by Wheeler. Also a reference has been added and various minor changes have been mad

    Cerebrospinal fluid levels of extracellular heat shock protein 72: A potential biomarker for bacterial meningitis in children

    Get PDF
    Extracellular heat shock protein 72 (Hsp72) is an endogenous danger signal and potential biomarker for critical illness in children. We hypothesized that elevated levels of extracellular Hsp72 in the cerebrospinal fluid (CSF) of children with suspected meningitis could predict bacterial meningitis. We measured extracellular Hsp72 levels in the CSF of 31 critically ill children with suspected meningitis via a commercially available enzyme-linked immunosorbent assay. Fourteen had bacterial meningitis based on CSF pleocytosis and bacterial growth in either blood or CSF culture. Seventeen children with negative cultures comprised the control group. CSF Hsp72 was significantly elevated in children with bacterial meningitis compared to controls. Importantly, CSF Hsp72 levels did not correlate with the CSF white blood cell count. On receiver operator characteristic analysis, using a cut-off of 8.1 ng/mL, CSF Hsp72 has a sensitivity of 79% and a specificity of 94% for predicting bacterial meningitis. We therefore conclude that CSF extracellular Hsp72 levels are elevated in critically ill children with bacterial meningitis versus controls. Hsp72 potentially offers clinicians improved diagnostic information in distinguishing bacterial meningitis from other processes

    On factorizing FF-matrices in Y(sln)Y(sl_n) and Uq(sln^)U_q(\hat{sl_n}) spin chains

    Full text link
    We consider quantum spin chains arising from NN-fold tensor products of the fundamental evaluation representations of Y(sln)Y(sl_n) and Uq(sln^)U_q(\hat{sl_n}). Using the partial FF-matrix formalism from the seminal work of Maillet and Sanchez de Santos, we derive a completely factorized expression for the FF-matrix of such models and prove its equivalence to the expression obtained by Albert, Boos, Flume and Ruhlig. A new relation between the FF-matrices and the Bethe eigenvectors of these spin chains is given.Comment: 30 page

    Class II Phosphoinositide 3-Kinases Contribute to Endothelial Cells Morphogenesis

    Get PDF
    PMCID: PMC3539993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Pre-Existing Superbubbles as the Sites of Gamma-Ray Bursts

    Get PDF
    According to recent models, gamma-ray bursts apparently explode in a wide variety of ambient densities ranging from ~ 10^{-3} to 30 cm^{-3}. The lowest density environments seem, at first sight, to be incompatible with bursts in or near molecular clouds or with dense stellar winds and hence with the association of gamma-ray bursts with massive stars. We argue that low ambient density regions naturally exist in areas of active star formation as the interiors of superbubbles. The evolution of the interior bubble density as a function of time for different assumptions about the evaporative or hydrodynamical mass loading of the bubble interior is discussed. We present a number of reasons why there should exist a large range of inferred afterglow ambient densities whether gamma-ray bursts arise in massive stars or some version of compact star coalescence. We predict that many gamma-ray bursts will be identified with X-ray bright regions of galaxies, corresponding to superbubbles, rather than with blue localized regions of star formation. Massive star progenitors are expected to have their own circumstellar winds. The lack of evidence for individual stellar winds associated with the progenitor stars for the cases with afterglows in especially low density environments may imply low wind densities and hence low mass loss rates combined with high velocities. If gamma-ray bursts are associated with massive stars, this combination might be expected for compact progenitors with atmospheres dominated by carbon, oxygen or heavier elements, that is, progenitors resembling Type Ic supernovae.Comment: 14 pages, no figures, submitted to The Astrophysical Journa
    • …
    corecore