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Summary. This paper proposes a common framework for various probabilistic logics. It con-
sists of a set of uncertain premises with probabilities attached to them. This raises the question
of the strength of a conclusion, but without imposing a particular semantics, no general so-
lution is possible. The paper discusses several possible semantics by looking at it from the
perspective of probabilistic argumentation.

1 Introduction

If the premises of a valid logical inference are not entirely certain, how certain is its con-
clusion? To find an answer to this is an important question, it is necessary to overcome the
restrictions and limits of the classical fields of logical and probabilistic inference. This simple
observations is not entirely new [3, 4, 6, 9, 22, 30, 26], but attempts of building such unifying
probabilistic logics (or logics of probability) are rather sparse, especially in comparison with
the long traditions of logic and probability theory as independent disciplines both in philoso-
phy and in science.5 Nevertheless, probabilistic logic is nowadays a rapidly developing inter-
disciplinary research topic with contributions from philosophical logic [1, 8, 17, 19, 31] and
Artificial Intelligence [7, 10, 18, 25, 24, 27], but also from mathematics, linguistics, statistics,
and decision theory [2, 20]. While it is clear that logic and probability theory are intimately
related, the exact shape of this relationship is still the subject of an ongoing debate.

In principle, there are at least two different ways of constructing a combined theory of
logical and probabilistic inference, depending on whether logic or probability theory is at
its center. The majority of approaches in the literature is logic-centered, either by defining a
probability function on the sentences of the logic [9, 30, 25] or by incorporating probabilities
into the syntax of the logic [7, 24]. In the theory of probabilistic argumentation [11, 15, 21],

5 For more information about the historical account of probabilistic logics, we refer to the
excellent survey in [17].



2 R. Haenni, J. W. Romeijn, G. Wheeler, and J. Williamson

where the available knowledge is partly encoded as a set of logical premises and partly as a
fully specified probability space, the starting point is neither biased towards logic, nor is it
biased towards probability. This setting gets particularly interesting when some of the logical
premises include variables that are not contained in the probability space. The two classical
questions of the probability and the logical deducibility of a hypothesis can then be replaced
by the more general question of the probability of a hypothesis being logically deducible from
the premises.

In Section 2, we first propose a neutral common framework for a variety of different
probabilistic logics. The framework as such has no particular semantics, but we will shortly
discuss what most people would probably consider its “standard semantics”. In Section 3, we
first give a short summary of the theory of probabilistic argumentation, which then allows
us to discuss various semantics for the common framework. Hence, the goal of this paper is
to establish a link between probabilistic argumentation and other probabilistic logics via the
common framework.

2 Probabilistic Logics

The principal goal of any probabilistic logic (sometimes called probability logic [1, 16, 31], or
progic for short) is to combine the capacity of probability theory to handle uncertainty with the
capacity of deductive logic to cope with qualitative and structural knowledge such as logical
relationships. As most probabilistic logics are constructed on top of an existing logic (proposi-
tional logic in the simplest case), probabilities are usually treated as an addendum rather than
as an integral part of the theory. In this section, we propose such a simple addendum, in which
probabilities (or sets of probabilities) are attached to premises to represent their respective un-
certainties. This then raises the question of the extent to which a possible conclusion follows
from the uncertain premises. Given the simplicity and generality of the proposed extension,
which allows it to be taken as a common unifying umbrella for many existing probabilistic
logics, we will refer to as the progic framework.

2.1 The Progic Framework

In a classical logic, the fundamental question of interest is whether a conclusion ψ is logically
entailed by a given set of premises Φ = {ϕ1, . . . ,ϕn}. Logical inference is thus essentially
a problem of verifying the entailment relation |= between Φ and ψ . The entailment relation
itself is usually defined in terms of a subset relation ⊆ of corresponding sets of truth assign-
ments (models) in the respective logic.

To augment the fundamental question of classical logic towards probabilistic logic, we
will now consider a set of premises with probabilities attached to them. In the simplest case,
this means that each premise ϕi has an attached probability xi ∈ [0,1], but to be as general as
possible, we may also allow the case where a set of probabilities Xi ⊆ [0,1] is attached to each
premise ϕi. In this augmented setting, which includes the special case of sharp probabilities
by Xi = {xi}, the traditional question of classical logic turns into a more general question of
the form

ϕ
X1
1 , . . . ,ϕXn

n |= ψ
Y , (1)
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where the set Y ⊆ [0,1] is intended to represent the extent to which the conclusion ψ follows
from the premises.6 This is a very general question, which covers a multitude of frameworks
of existing probabilistic logics. We will thus refer to is as the general progic framework (or
progic framework for short). Note that the problem is the determination of the set Y itself,
not the verification of the entailment relation for a given Y . Needless to say that the deter-
mination of Y is heavily dependent on the semantics imposed by the chosen framework. In
the next subsection, we will discuss one of the most straightforward semantics for the progic
framework.

2.2 The Standard Semantics

In the so-called standard semantics of the progic framework, we consider each attached
probability set Xi as a constraint for the probability P(ϕi) in a corresponding probability
space. For the sake of simplicity, we will restrict the premises to be propositional sen-
tences. Formally, we write V = {Y1, . . . ,Yr} to denote the set of involved Boolean variables
Yi, each with a set Ωi = {0,1} of possible values. In the corresponding propositional lan-
guage LV , we use propositional symbols yi as placeholders for Yi = 1. The Cartesian product
ΩV = Ω1 × ·· ·×Ωr = {0,1}r then contains the set of all possible truth assignments of the
propositional language, each of which representing a possible (state of the) world. For a given
propositional sentence ϕ ∈LV , we write JϕK⊆ΩV to denote the set of truth assignments for
which ϕ evaluates to 1 (according to the usual semantics of propositional logic), and we say
that ϕ entails ψ , or that ϕ |= ψ holds, iff JϕK⊆ JψK.

To make a connection to probability theory, let ΩV play the role of a finite sample space.
The finiteness of ΩV allows us to work with the σ -algebra 2ΩV of all subsets of ΩV , i.e.
we obtain a probability space (ΩV ,2ΩV ,P) for any measure P : 2ΩV → [0,1] that satisfies the
Kolmogorov’s probability axioms. With P we denote the set of all such probability measures
for a given set of variable V . Note that we adopt the usual notational convention of writing
P(ϕ) rather than P(JϕK) for the probability of the event JϕK.

According to the above-mentioned general idea of the standard semantics, we consider
each set Xi as a constraint P(ϕi) ∈ Xi for the unknown probability measure P. Formally, let
Pi = {P ∈ P : P(ϕi) ∈ Xi} denote the set of all probability measures satisfying the constraint
for the i-th premise. The intersection of all these sets, P∗ = P1∩·· ·∩Pn, defines then the set of
probability measures satisfying all constraints. From this, we obtain with Y = {P(ψ) : P∈ P∗}
a simple solution for the generalized inference problem of the progic framework. Note that
inference according to the standard semantics can be seen as a generalization of classical
logical inference, which is concerned with a continuum of truth assignments in form of all
possible probability measures.

An important special case of the above setting arises when the attached probability sets Xi
are all functionally unrelated intervals, i.e. Xi = [`i,ui]. This means that all sets Pi are convex,
which implies that P∗ is also convex and that Y is again an interval with a lower and an upper
bound.7 The lower and upper bounds of Y are usually denoted by P(ψ) = min{P(ψ) : P∈ P∗}
and P(ψ) = max{P(ψ) : P ∈ P∗}, respectively. Note that the convexity of P∗ guarantees that
P and P are among the extremal points of P∗. Interestingly, we may obtain an interval for
Y even if all sets Xi are singletons. From a computational point of view, we can translate the
problem of finding Y according to the standard semantics into a (very large) linear optimization

6 For Xi = {1}, this general setting degenerates into the classical problem of logical infer-
ence.

7 Convex set of probability measures are sometimes called credal sets [5, 23].
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problem, e.g. with three constraints P(ϕi) ≥ `i, P(ϕi) ≤ ui, and P(ϕi) = ∑ω∈JϕiK P({ω}) for
all premises [1, 25].

Example 1. To illustrate the standard semantics, consider two premises (a∧b)[0,0.25] and (a∨
¬b){1}. For the specification of a probability measure with respect to the corresponding 2-
dimensional sample space {0,1}2 at least three parameters are needed (the size of the sample
space minus 1). This means that the set of all possible probability measures P can be nicely
depicted by a tetrahedron (3-simplex) with maximal probabilities for the state descriptions
a∧b, a∧¬b, ¬a∧b, and ¬a∧¬b at each of its four extremities. This tetrahedron is depicted
in Fig. 1, together with the convex sets P1, P2, and P∗. The picture also shows that Y = [0,1]
is the result for the conclusion a, whereas Y = [0,0.25] is the result for the conclusion b.

P (a ∧ ¬b) = 1 P (¬a ∧ b) = 1

P (a ∧ b) = 1

0.25

P2

P (a) = 1
P (b) = 0.25

P (a) = 0.25
P (b) = 0.25

P∗

P (a) = 1
P (b) = 0

P (a) = 0
P (b) = 0

P1

Fig. 1. The set P of all possible probability measures for the sample space {0,1}2, depicted as
a tetrahedron, together with the convex sets P1, P2, and P∗ of Example 1.

3 Probabilistic Argumentation

The theory of probabilistic argumentation [11, 13, 15, 21] is first of all driven by the general
idea of putting forward the pros and cons of a hypothesis in question, from which it derives its
name. The weights of the resulting logical arguments and counter-arguments are measured by
probabilities, which are then turned into (sub-additive) degrees of support and (super-additive)
degrees of possibility. Intuitively, degrees of support measure the presence of evidence sup-
porting the hypothesis, whereas degrees of possibility measure the absence of evidence refut-
ing the hypothesis. For this, probabilistic argumentation is concerned with probabilities of a
particular type of event of the form “the hypothesis is a logical consequence” rather than “the
hypothesis is true”, i.e. very much like Ruspini’s epistemic probabilities [28, 29]. Apart from
that, they are classical additive probabilities in the sense of Kolmogorov’s axioms.

3.1 Degrees of Support and Possibility

Probabilistic argumentation requires the available evidence to be encoded by a finite set Φ =
{ϕ1, . . . ,ϕn} ⊂ LV of sentences in a logical language LV (over a set of discrete variables
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V ) and a fully specified probability measure P : 2ΘW → [0,1], where ΘW denotes the discrete
sample space generated by a subset W ⊆V of so-called probabilistic variables. These are the
theory’s basic ingredients. There are no further assumptions regarding the specification of the
probability measure P (we may for example use a Bayesian network) or the language LV .

Definition 1. A probabilistic argumentation system is a quintuple

A = (V,LV ,Φ ,W,P), (2)

where V , LV , Φ , W , and P are as defined above [13].

For a given probabilistic argumentation system A , let another logical sentence ψ ∈LV
represent the hypothesis in question. For the formal definition of degrees of support and pos-
sibility, consider the subset of ΘW , whose elements, if assumed to be true, are each sufficient
to make ψ a logical consequence of Φ . Formally, this set of so-called arguments is denoted
and defined by

ArgsA (ψ) = {ω ∈ΩW : Φω |= ψ}= ΩW \ JΦ ∪{¬ψ}K↓W , (3)

where Φω is obtained from Ω by instantiating all the variables from W according to the
partial truth assignment ω [13]. The elements of ArgsA (¬ψ) are sometimes called counter-
arguments of ψ , see Fig. 2 for an illustration. Note that the elements of ArgsA (⊥) are incon-
sistent with the available evidence Φ , which is why they are sometimes called conflicts. The
complement of the set of conflicts,

EA = ΩW \ArgsA (⊥) = JΦK↓W , (4)

can thus be interpreted as the available evidence in the sample space ΩW induced by Φ . We
will use EA in its typical role to condition P.

ΩW

ΩV \W

ArgsA(ψ)

ArgsA(¬ψ)

!Φ"

!ψ"

ArgsA(¬ψ)

Fig. 2. The sets of arguments and counter-arguments of a hypothesis ψ obtained from the given
premises Φ . The sample space ΩW is a sub-space of the entire space ΩV = ΩW ×ΩV\W .

Definition 2. The degree of support of ψ , denoted by dspA (ψ), is the conditional probability
of the event Args(ψ) given the evidence EA ,

dspA (ψ) = P(ArgsA (ψ)|EA ) =
P(ArgsA (ψ))−P(ArgsA (⊥))

1−P(ArgsA (⊥))
. (5)
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Definition 3. The degree of possibility of ψ , denoted by dpsA (ψ), is defined by

dpsA (ψ) = 1−dspA (¬ψ). (6)

Note that these formal definitions imply dspA (ψ) ≤ dpsA (ψ) for all hypotheses ψ ∈
LV and dspA (ψ) = dpsA (ψ) for W = V . An important property of degree of support is
its consistency with pure logical and pure probabilistic inference. By looking at the extreme
cases of W = /0 and W = V , it turns out that degrees of support naturally degenerate into
logical entailment Φ |= ψ and into ordinary posterior probabilities P(ψ|Φ), respectively. This
underlines the theory’s pretense of being a unified formal theory of logical and probabilistic
reasoning [11].

When it comes to quantitatively evaluate the truth of a hypothesis ψ , it is possible to
interpret degrees of support and possibility as respective lower and upper bounds of an inter-
val. The fact that such bounds are obtained without effectively dealing with probability sets
or probability intervals distinguishes the theory from most other approaches to probabilistic
logic.

3.2 Possible Semantics for the Progic Framework

Now let’s turn our attention to the question of interpreting an instance of the progic frame-
work in form of Equation (1) as a probabilistic argumentation system. For this, we will first
generalize in various ways the idea of the standard semantics as exposed in Subsection 2.2 to
degrees of support and possibility (Semantics 1 to 4). Then we will explore the perspective
obtained by considering each attached probability set as an indicator of the premise’s reliabil-
ity (Semantics 5–7). In all cases we will end up with lower and upper bounds for the target
interval Y in Equation (1).

Semantics 1: The Generalized Standard Semantics

As in the standard semantics, let each attached probability set Xi be interpreted as a constraint
for the possible probability measures, except that we will now restrict the sample space to be
a sub-space ΩW of ΩV for some fixed set W ⊆ V of probabilistic variables. We use again P
to denote the set of all possible probability measures. Since each premise ϕi defines an event
JϕiK↓W in ΩW , we can interpret the set Xi as a constraint P(JϕiK↓W ) ∈ Xi. As before, we use
Pi = {P ∈ P : P(ϕ↓Wi ) ∈ Xi} to denote8 the set of all probability measures satisfying the con-
straint for the i-th premise, and P∗ = P1∩·· ·∩Pn for the combination of all constraints. This
leads then to a whole family A = {(V,LV ,Φ ,W,P) : P ∈ P∗} of probabilistic argumentation
systems, each of which with its own degree of support (and degree of possibility) function.

To use this interpretation to produce an answer to our main question regarding the extent
of the set Y for a conclusion ψ , there are different ways to go. By considering all possible
degrees of support, i.e. by defining Y1 = {dspA (ψ) : A ∈ A}, the first option focuses on
degrees of support. As a second option, we may consider the counterpart of the first one with
degrees of possibility in its center, from which we get Y2 = {dpsA (ψ) : A ∈ A}. As a third
alternative, we may consider the minimal degree of support, dsp(ψ) = min{dspA (ψ) : A ∈
A}, and the maximal degree of possibility, dps(ψ) = max{dpsA (ψ) : A ∈ A}, and use them
as respective lower and upper bounds for the target interval Y3 = [dsp(ψ),dps(ψ)]. Note that in
the special case of W = V , all three options coincide with the standard semantics as described
in Subsection 2.2.

8 We prefer to use the simplified notation P(ϕ↓Wi ) as an abbreviation for P(JϕiK↓W ).
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Semantics 2: The Standard Semantics Applied to Degrees of Support

A similar semantics arises, if we consider each set Xi to be a constraint for the degree of
support of ϕi. Again, we need to fix a set W ⊆ V of probabilistic variables to get started.
Consider then the set S = {dspA : A = (V,LV ,Φ ,W,P), P ∈ P} of all possible degree of
support functions, the corresponding constraints Si = {dspA ∈ S : dspA (ϕi) ∈ Xi} for each
premise, and the combined constraint S∗ = S1∩·· ·∩Sn. As before, we obtain a whole family
A = {A : dspA ∈ S∗} of probabilistic argumentation systems.

For the determination of the target set Y , we may now consider the same three options as
in the first semantics. The story is exactly the same, except that it starts from a different set A.
As before, W = V leads in all three cases back to the standard semantics.

Semantics 3: The Standard Semantics Applied to Degrees of Possibility

By considering each sets Xi as a constraint for the degree of support of ϕi, we obtain another
possible semantics for the progic framework. Due to its perfect symmetry to the previous se-
mantics, we will not not discuss it explicitly. Note that we may “simulate” this option by apply-
ing the second semantics to the negated premises ¬ϕ

Y1
1 , . . . ,¬ϕ

Yn
n , where Yi = {1− x : x ∈ Xi}

denotes the corresponding set of “negated” probabilities, and vice versa. This string relation-
ships is a simple consequence of the relationship between degrees of support and possibility.

Semantics 4: The Standard Semantics Applied Symmetrically

To obtain a more symmetrical semantics, in which degrees of support and degrees of possi-
bility are equally important, we consider the restricted case where each set Xi = [`i,ui] is an
interval. We may then interpret the lower bound `i as a sharp constraint for the degree of sup-
port and the upper bound ui as a sharp constraint for the degree of possibility of ϕi. For this,
we need again a fixed set W ⊆ V of probabilistic variables to get started. Note that we can
use the relationship dpsA (ψ) = 1−dspA (¬ψ) to turn the two constraints dspA (ψi) = `i and
dpsA (ψi) = ui into two constraints for respective degrees of support or into two constraints for
respective degrees of possibility. To obtain a target interval Y for a conclusion ψ , we may then
proceed in the same way as in Semantics 2 and 3, the results however will be quite different
for all possible options for Y .

Semantics 5: Unreliable Premises (Incompetent Sources)

A very simple, but quite different semantics exists when each premise has a sharp probability
Xi = {xi} attached to it. We can then think of xi to represent the evidential uncertainty of the
premise ϕi in the sense that ϕi belongs to Φ with probability xi. Formally, we could express
this idea by P(ϕi ∈Φ) = xi and thus interpret Φ as a fuzzy set whose membership function is
determined by the attached probabilities.

To make this setting compatible with a probabilistic argumentation system, let us first
redirect each attached probability xi to an auxiliary propositional variable reli. The intuitive
idea of this is to consider each premise ϕi as a piece of evidence from a possibly unreliable
source Si. The reliability of Si is thus modeled by the proposition reli, and with P(reli) = xi
we measure its degree of reliability. The subsequent discussion will be restricted to the case of
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independent9 sources, which allows us to multiply the marginal probabilities P(reli) to obtain
a fully specified probability measure P over all auxiliary variables.

On the purely logical side, we should expect that any statement from a reliable source is
indeed true. This allows us to write reli → ϕi to connect the auxiliary variable reli with ϕi.
With

Φ
+ = {rel1 → ϕ1, . . . ,reln → ϕn}

we denote the set of all such material implications, from which we obtain a probabilistic
argumentation system A + = (V ∪W,LV∪W ,Φ+,W,P) with W = {rel1, . . . ,reln} and P as
defined above. This allows us then to compute the degrees of support and possibility for the
conclusion ψ and to use them as lower and upper bounds for the target interval Y .

In the proposed setting, only the positive case of a reliable source is modeled, but noth-
ing is said about the behaviour of an unreliable source. For this, it is possible to distinguish
between incompetent or dishonest (but competent) sources. In the case of an incompetent
source, from which no meaningful evidence should be expected, we may model the negative
behaviour by auxiliary implications of the form ¬reli →>. Note that these implications are
all irrelevant tautologies, i.e. we get back to the same set Φ+ from above. In this semantics,
the values P(reli) = xi should therefore be interpreted as degrees of competence rather than
degrees of reliability.

Semantics 6: Unreliable Premises (Dishonest Sources)

As before, we suppose that all attached probabilities are sharp values xi, but now we consider
the possibility of the sources being malicious, i.e. competent but not necessarily honest. In
this case, the interpretation of P(reli) = xi becomes the one of a degree of honesty of source
Si. Dishonest sources are different from incompetent sources in their attitude of deliberately
stating the opposite of the truth. From a logical point of view, ¬reli allows us thus to infer
¬ϕi, which we may express by additional material implications ¬reli →¬ϕi. This leads to an
extended set of premises,

Φ
± = Φ

+∪{¬rel1 →¬ϕ1, . . . ,¬reln →¬ϕn} ≡ {rel1 ↔ ϕ1, . . . ,reln ↔ ϕn},

and a different probabilistic argumentation system A ± = (V ∪W,LV∪W ,Φ±,W,P). Note that
the difference between the two interpretations may have a huge impact on the resulting degrees
of support and possibility of ψ , and therefore produce quite different target sets Y .

Semantics 7: Unreliable Premises (Incompetent and Dishonest Sources)

For the more general case, where each Xi = [`i,ui] is an interval, we will now consider a refined
model of the above-mentioned idea of splitting up reliability into competence and honesty. Let
Xi still refer to the reliability of the source, but consider now two auxiliary variables compi
(for competence) and honi (for honesty). This allows us to distinguish three exclusive and
exhaustive cases, namely compi ∧ honi (the source is reliable), compi ∧¬honi (the source is

9 This assumption may appear to be overly idealized, but there are many practical situations
in which this is approximately correct [12, 14]. Relaxing the independence assumption
would certainly allow us to cover a broader class of problems, but it would also make the
analysis more complicated.
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malicious), and ¬compi (the source is incompetent). As before, we assume that ϕi holds if Si
is reliable, but also that ¬ϕi holds if Si is malicious. Statements from incompetent sources will
again be neglected. Logically, the general behaviour of such a source can thus be modeled
by two sentences compi ∧ honi → ϕ and compi ∧¬honi → ¬ϕi, which can be merged into
compi → (honi ↔ ϕi). This leads to the set of premises

Φ
∗ = {comp1 → (hon1 ↔ ϕ1), . . . ,compn → (honn ↔ ϕn)}.

To turn this model into a probabilistic argumentation system, we need to link the auxiliary
variables W = {comp1, . . . ,compn,hon1, . . . ,honn} to corresponding probabilities. For this,
we assume independence between compi and honi, which is often quite reasonable. If we as-
sume the least restrictive interval [0,1] to represent a totally incompetent source, and similarly
the most restrictive interval [xi,xi] to represent a totally competent source, then ui− `i surely
represents the source’s degree of incompetence, from which we obtain

P(compi) = 1− (ui− `i) = 1−ui + `i

for the marginal probability of compi. Following a similar line of reasoning, we first obtain
P(compi ∧ honi) = `i for the combined event compi ∧ honi of a reliable source, which then
leads to

P(honi) =
`i

P(compi)
=

`i

1−ui + li
for the marginal probability of honi. As before, we can use the independence assumption to
multiply these values to obtain a fully specified probability measure P over all auxiliary vari-
ables. With A ∗ = (V ∪W,LV∪W ,Φ∗,W,P) we denote the resulting probabilistic argumenta-
tion system, from which we obtain degrees of support and possibility for ψ , the bounds for the
target interval Y . Note that A + and A ± from the previous two semantics are special cases of
A ∗, namely for ui = 1 (honi becomes irrelevant, and reli undertakes the role of compi) and
`i = ui (compi becomes irrelevant, and reli undertakes the role of honi), respectively.

4 Conclusion

Attaching probabilities to logical sentences is one of the most intuitive and popular starting
points for the construction of a probabilistic logic. With the proposed progic framework, for
which no particular semantics is imposed, the paper presents a unifying umbrella which covers
many existing probabilistic logics. This is the first contribution of the paper.

The second contribution is the discussion of several possible semantics obtained by look-
ing at it as different instances of a probabilistic argumentation system. This underlines the
richness and diversity of the common framework. The discussion also contributes to a better
understanding of the connection between the theory of probabilistic argumentation and other
probabilistic logics.

This paper is an important partial result in the context of a more comprehensive project, in
which other possible semantics and a common computational machinery are currently under
investigation.

Acknowledgement. This research is supported by the Swiss National Science Foundation,
Project No. PP002-102652/1, and The Leverhulme Trust.
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