800 research outputs found
Disentangled Representation Learning for Astronomical Chemical Tagging
Modern astronomical surveys are observing spectral data for millions of stars. These spectra contain chemical information that can be used to trace the Galaxy's formation and chemical enrichment history. However, extracting the information from spectra and making precise and accurate chemical abundance measurements is challenging. Here we present a data-driven method for isolating the chemical factors of variation in stellar spectra from those of other parameters (i.e., Teff, log g, [Fe/H]). This enables us to build a spectral projection for each star with these parameters removed. We do this with no ab initio knowledge of elemental abundances themselves and hence bypass the uncertainties and systematics associated with modeling that rely on synthetic stellar spectra. To remove known nonchemical factors of variation, we develop and implement a neural network architecture that learns a disentangled spectral representation. We simulate our recovery of chemically identical stars using the disentangled spectra in a synthetic APOGEE-like data set. We show that this recovery declines as a function of the signal-to-noise ratio but that our neural network architecture outperforms simpler modeling choices. Our work demonstrates the feasibility of data-driven abundance-free chemical tagging
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
Motor Learning Induces Plasticity in the Resting Brain—Drumming Up a Connection
Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed
Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia
BACKGROUND: Most patients with familial primary pulmonary hypertension have defects in the gene for bone morphogenetic protein receptor II (BMPR2), a member of the transforming growth factor beta (TGF-beta) superfamily of receptors. Because patients with hereditary hemorrhagic telangiectasia may have lung disease that is indistinguishable from primary pulmonary hypertension, we investigated the genetic basis of lung disease in these patients.
METHODS: We evaluated members of five kindreds plus one individual patient with hereditary hemorrhagic telangiectasia and identified 10 cases of pulmonary hypertension. In the two largest families, we used microsatellite markers to test for linkage to genes encoding TGF-beta-receptor proteins, including endoglin and activin-receptor-like kinase 1 (ALK1), and BMPR2. In subjects with hereditary hemorrhagic telangiectasia and pulmonary hypertension, we also scanned ALK1 and BMPR2 for mutations.
RESULTS: We identified suggestive linkage of pulmonary hypertension with hereditary hemorrhagic telangiectasia on chromosome 12q13, a region that includes ALK1. We identified amino acid changes in activin-receptor-like kinase 1 that were inherited in subjects who had a disorder with clinical and histologic features indistinguishable from those of primary pulmonary hypertension. Immunohistochemical analysis in four subjects and one control showed pulmonary vascular endothelial expression of activin-receptor-like kinase 1 in normal and diseased pulmonary arteries.
CONCLUSIONS: Pulmonary hypertension in association with hereditary hemorrhagic telangiectasia can involve mutations in ALK1. These mutations are associated with diverse effects, including the vascular dilatation characteristic of hereditary hemorrhagic telangiectasia and the occlusion of small pulmonary arteries that is typical of primary pulmonary hypertension
Drum training induces long-term plasticity in the cerebellum and connected cortical thickness
It is unclear to what extent cerebellar networks show long-term plasticity and accompanied changes in cortical structures. Using drumming as a demanding multimodal motor training, we compared cerebellar lobular volume and white matter microstructure, as well as cortical thickness of 15 healthy non-musicians before and after learning to drum, and 16 age matched novice control participants. After 8 weeks of group drumming instruction, 3 ×30 minutes per week, we observed the cerebellum significantly changing its grey (volume increase of left VIIIa, relative decrease of VIIIb and vermis Crus I volume) and white matter microstructure in the inferior cerebellar peduncle. These plastic cerebellar changes were complemented by changes in cortical thickness (increase in left paracentral, right precuneus and right but not left superior frontal thickness), suggesting an interplay of cerebellar learning with cortical structures enabled through cerebellar pathways
Estimating the incidence of acute infectious intestinal disease in the community in the UK:A retrospective telephone survey
Objectives: To estimate the burden of intestinal infectious disease (IID) in the UK and determine whether disease burden estimations using a retrospective study design differ from those using a prospective study design. Design/Setting: A retrospective telephone survey undertaken in each of the four countries comprising the United Kingdom. Participants were randomly asked about illness either in the past 7 or 28 days. Participants: 14,813 individuals for all of whom we had a legible recording of their agreement to participate Outcomes: Self-reported IID, defined as loose stools or clinically significant vomiting lasting less than two weeks, in the absence of a known non-infectious cause. Results: The rate of self-reported IID varied substantially depending on whether asked for illness in the previous 7 or 28 days. After standardising for age and sex, and adjusting for the number of interviews completed each month and the relative size of each UK country, the estimated rate of IID in the 7-day recall group was 1,530 cases per 1,000 person-years (95% CI: 1135 – 2113), while in the 28-day recall group it was 533 cases per 1,000 person-years (95% CI: 377 – 778). There was no significant variation in rates between the four countries. Rates in this study were also higher than in a related prospective study undertaken at the same time. Conclusions: The estimated burden of disease from IID varied dramatically depending on study design. Retrospective studies of IID give higher estimates of disease burden than prospective studies. Of retrospective studies longer recall periods give lower estimated rates than studies with short recall periods. Caution needs to be exercised when comparing studies of self-reported IID as small changes in study design or case definition can markedly affect estimated rates
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
Improving the prognosis of patients with severely decreased glomerular filtration rate (CKD G4+): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Patients with severely decreased glomerular filtration rate (GFR) (i.e., chronic kidney disease [CKD] G4+) are at increased risk for kidney failure, cardiovascular disease (CVD) events (including heart failure), and death. However, little is known about the variability of outcomes and optimal therapeutic strategies, including initiation of kidney replacement therapy (KRT). Kidney Disease: Improving Global Outcomes (KDIGO) organized a Controversies Conference with an international expert group in December 2016 to address this gap in knowledge. In collaboration with the CKD Prognosis Consortium (CKD-PC) a global meta-analysis of cohort studies (n = 264,515 individuals with CKD G4+) was conducted to better understand the timing of clinical outcomes in patients with CKD G4+ and risk factors for different outcomes. The results confirmed the prognostic value of traditional CVD risk factors in individuals with severely decreased GFR, although the risk estimates vary for kidney and CVD outcomes. A 2- and 4-year model of the probability and timing of kidney failure requiring KRT was also developed. The implications of these findings for patient management were discussed in the context of published evidence under 4 key themes: management of CKD G4+, diagnostic and therapeutic challenges of heart failure, shared decision-making, and optimization of clinical trials in CKD G4+ patients. Participants concluded that variable prognosis of patients with advanced CKD mandates individualized, risk-based management, factoring in competing risks and patient preferences
Recognition memory, self-other source memory, and theory-of-mind in children with autism spectrum disorder.
This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an “enactment effect”, demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered
- …