569 research outputs found

    Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum

    Get PDF
    Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0

    Moving from An Executive Information System to Everyone\u27s Information System: Lessons from a Case Study

    Get PDF
    The history of a major steel company\u27s executive information system (EIS) is reported from its inception in 1984, through its demise as a system for top management, to its transformation in 1991 as a strikingly successful information system for all managers and administrative staff. This case has significant implications for all those who are interested in providing technical support to top decision-makers. It also has important lessons for any organization that has an EIS or that is planning to implement the current generation of EIS technology

    Scalar products in generalized models with SU(3)-symmetry

    Full text link
    We consider a generalized model with SU(3)-invariant R-matrix, and review the nested Bethe Ansatz for constructing eigenvectors of the transfer matrix. A sum formula for the scalar product between generic Bethe vectors, originally obtained by Reshetikhin [11], is discussed. This formula depends on a certain partition function Z(\{\lambda\},\{\mu\}|\{w\},\{v\}), which we evaluate explicitly. In the limit when the variables \{\mu\} or \{v\} approach infinity, this object reduces to the domain wall partition function of the six-vertex model Z(\{\lambda\}|\{w\}). Using this fact, we obtain a new expression for the off-shell scalar product (between a generic Bethe vector and a Bethe eigenvector), in the case when one set of Bethe variables tends to infinity. The expression obtained is a product of determinants, one of which is the Slavnov determinant from SU(2) theory. It extends a result of Caetano [13].Comment: 28 pages, 12 figures, greatly lengthened exposition in v3; 2 appendices and extra references adde

    The Paradox of Virtual Dipoles in the Einstein Action

    Get PDF
    The functional integral of pure Einstein 4D quantum gravity admits abnormally large and long-lasting "dipolar fluctuations", generated by virtual sources with the property Int d^4x Sqrt{g(x)} Tr T(x) = 0. These fluctuations would exist also at macroscopic scales, with paradoxical consequences. We set out their general features and give numerical estimates of possible suppression processes.Comment: LaTeX, 5 pages; reference adde

    Prospects for radio detection of ultra-high energy cosmic rays and neutrinos

    Get PDF
    The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970's. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off. (abridged)Comment: latex, 26 pages, 17 figures, to appear in: "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews, (Elsevier: Amsterdam

    Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach

    Full text link
    We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB) black holes in d=5,7,8d=5, 7, 8 dimensions and vector perturbations in d=5,6,7d = 5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d=6d=6 is not considered because of the fact that it is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss-Bonnet coupling (α′\alpha') increases. The imaginary part first decreases upto a certain value of α′\alpha' and then increases with α′\alpha' for both tensor and vector perturbations. For larger values of α′\alpha', the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α′→0\alpha' \to 0, the quasinormal mode frequency for tensor and vector perturbation of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and results added for QN frequencies for vector perturbations, new referencees adde

    Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium

    Full text link
    We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a Veselago medium. Linear perturbation in rotating (non-magnetized and magnetized) plasma is introduced and their Fourier analysis is considered. We discuss wave properties with the help of wave vector, refractive index and change in refractive index in the form of graphs. It is concluded that some waves move away from the event horizon in this unusual medium. We conclude that for the rotating non-magnetized plasma, our results confirm the presence of Veselago medium while the rotating magnetized plasma does not provide any evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space Sc

    Conceptual Unification of Gravity and Quanta

    Get PDF
    We present a model unifying general relativity and quantum mechanics. The model is based on the (noncommutative) algebra \mbox{{\cal A}} on the groupoid \Gamma = E \times G where E is the total space of the frame bundle over spacetime, and G the Lorentz group. The differential geometry, based on derivations of \mbox{{\cal A}}, is constructed. The eigenvalue equation for the Einstein operator plays the role of the generalized Einstein's equation. The algebra \mbox{{\cal A}}, when suitably represented in a bundle of Hilbert spaces, is a von Neumann algebra \mathcal{M} of random operators representing the quantum sector of the model. The Tomita-Takesaki theorem allows us to define the dynamics of random operators which depends on the state \phi . The same state defines the noncommutative probability measure (in the sense of Voiculescu's free probability theory). Moreover, the state \phi satisfies the Kubo-Martin-Schwinger (KMS) condition, and can be interpreted as describing a generalized equilibrium state. By suitably averaging elements of the algebra \mbox{{\cal A}}, one recovers the standard geometry of spacetime. We show that any act of measurement, performed at a given spacetime point, makes the model to collapse to the standard quantum mechanics (on the group G). As an example we compute the noncommutative version of the closed Friedman world model. Generalized eigenvalues of the Einstein operator produce the correct components of the energy-momentum tensor. Dynamics of random operators does not ``feel'' singularities.Comment: 28 LaTex pages. Substantially enlarged version. Improved definition of generalized Einstein's field equation

    Two-loop corrections to the decay rate of parapositronium

    Full text link
    Order α2\alpha^2 corrections to the decay rate of parapositronium are calculated. A QED scattering calculation of the amplitude for electron-positron annihilation into two photons at threshold is combined with the technique of effective field theory to determine an NRQED Hamiltonian, which is then used in a bound state calculation to determine the decay rate. Our result for the two-loop correction is 5.1243(33)5.1243(33) in units of (α/π)2(\alpha/\pi)^2 times the lowest order rate. This is consistent with but more precise than the result 5.1(3)5.1(3) of a previous calculation.Comment: 26 pages, 7 figure
    • …
    corecore