29 research outputs found

    Raw data for Gryllus firmus quantitative genetics experiment on rearing density and behavior

    No full text
    Information on individuals included in the experiment, including: ID, dam, sire, rearing density, sex, mass, eclosion date, behavioral trial information

    Data from: Effects of the group’s mix of sizes and personalities on the emergence of alternative mating systems in water striders

    No full text
    Although much work has analysed how individual behavioural plasticity and adaptations to ecological conditions (e.g. density, sex-ratio, resource distribution) shape mating systems, few studies have assessed the relative importance of multiple factors in explaining why mating systems vary from one sub-population to the next even in the same ecological conditions. Differences among groups in their phenotypic composition, such as their average phenotype, within-group variation in phenotype, or the phenotype of individuals occupying key social roles might shape the mating system emerging at the group level and explain some portion of mating system variability. Here, we take advantage of the mating system flexibility of stream water striders (Aquarius remigis) to investigate how phenotypic composition affects the mating system emerging at the group level. Groups exhibited stable mating systems varying from scramble polygyny with intense sexual conflict, to systems with a clear dominant male guarding a “harem” of females. We found that male size asymmetries and the personality of the largest individuals within groups had important effects on the group’s mating system. The group’s average male and female personality, size, and social plasticity also explained some of the variation in mating systems. Our study is one of the first to quantify significant relationships between group phenotypic composition and mating system variability

    Data from: Developmental and genetic effects on behavioral and life-history traits in a field cricket

    No full text
    A fundamental goal of evolutionary ecology is to identify the sources underlying trait variation on which selection can act. Phenotypic variation will be determined by both genetic and environmental factors, and adaptive phenotypic plasticity is expected when organisms can adjust their phenotypes to match environmental cues. Much recent research interest has focused on the relative importance of environmental and genetic factors on the expression of behavioral traits, in particular, and how they compare with morphological and life-history traits. Little research to date examines the effect of development on the expression of heritable variation in behavioral traits, such as boldness and activity. We tested for genotype, environment, and genotype-by-environment differences in body mass, development time, boldness, and activity, using developmental density treatments combined with a quantitative genetic design in the sand field cricket (Gryllus firmus). Similar to results from previous work, animals reared at high densities were generally smaller and took longer to mature, and body mass and development time were moderately heritable. In contrast, neither boldness nor activity responded to density treatments, and they were not heritable. The only trait that showed significant genotype-by-environment differences was development time. It is possible that adaptive behavioral plasticity is not evident in this species because of the highly variable social environments it naturally experiences. Our results illustrate the importance of validating the assumption that behavioral phenotype reflects genetic patterns and suggest questions about the role of environmental instability in trait variation and heritability

    Transitivity and structural balance in marmot social networks

    No full text
    Abstract: Social relationships are composed of both positive (affiliative) and negative (agonistic) interactions, representing opposing effects. Social network theory predicts that positive relationships should be transitive; thus, the friend of a friend is more likely to be a friend. Further, when considering both positive and negative relationships jointly, structural balance theory predicts that certain configurations of positive and negative relationships in a triad are inherently less stable (unbalanced) and should tend to be eliminated. However, structural balance has been rarely examined in nonhuman social systems. We tested for transitivity and structural balance in social networks of socially flexible yellow-bellied marmots (Marmota flaviventer) and asked if group size, network density, or group composition affected the degree of structural balance. We found a consistent pattern of significant transitivity in positive interactions, some transitivity in negative interactions, and some evidence of structural balance. In particular, a “weak” definition of structural balance is probably more common than “strong” structural balance, which used a stricter definition of balance. Network size limited the ability to detect these social processes, and smaller networks were less likely to show significant transitivity or structural balance. The proportion of adult females in a group affected the level of transitivity but did not affect the degree of structural balance. Our study suggests that there are intriguing similarities in social processes across diverse animal societies and that studying triads and network motifs may help identify basic social mechanisms linking local to global structure. Significance statement: Social network theory predicts that basic social mechanisms should lead to similar structural properties across different societies. For example, positive relationships should be transitive (a friend of a friend is a friend), and certain combinations of positive and negative relationships represent conflict and should be unstable over time (e.g., a friend of a friend being an enemy is an unstable state). This latter theory, called structural balance, has rarely been examined in nonhuman societies; hence, we tested for transitivity and structural balance in groups of free-living yellow-bellied marmots. Positive interactions were generally transitive, but evidence for structural balance was inconsistent. Furthermore, group composition could affect network transitivity, and small network size (associated with few interactions) limits ability to detect significant patterns. Our results suggest that transitivity is fundamental in structuring positive relationships, while some forms of structural balance are present but not widespread

    Data from: Altered physical and social conditions produce rapidly reversible mating systems in water striders

    No full text
    Mating systems can vary within-species but the environmental drivers and behavioral mechanisms underlying this variation are seldom investigated experimentally. We experimentally assessed how individual behavioral plasticity in response to changes in pool and group size resulted in fundamental shifts in mating systems in water striders. We observed the same animals in larger and smaller pools, mimicking variation in pool size in natural streams, and observed a rapid, reversible change in the entire mating system. In large pools, striders exhibited scramble promiscuity with intense sexual conflict. Most males were active, harassing and driving females into hiding. Matings were frequent and typically lasted for more than 100 min. In contrast, when placed in small pools, the same animals often exhibited harem polygyny where the largest male drove other males into hiding, but allowed females to be relatively active. Matings were less frequent and of much shorter duration. Harem polygyny took several days to emerge after animals were moved to small pools, while these same animals returned to scramble promiscuity within hours after being moved to larger pools. Such variability in mating systems likely has important implications for the evolution of individual mating tactics

    Data from: Multiple mating reveals complex patterns of assortative mating by personality and body size

    No full text
    1. Understanding patterns of non-random mating is central to predicting the consequences of sexual selection. Most studies quantifying assortative mating focus on testing for correlations among partners’ phenotypes in mated pairs. Few studies have distinguished between assortative mating arising from preferences for similar partners (expressed by all or a subset of the population), versus from phenotypic segregation in the environment. Also, few studies have assessed the robustness of assortative mating against temporal changes in social conditions. 2. We tracked multiple matings by stream water striders (Aquarius remigis) across variable social conditions to investigate mating patterns by both body size and behavioural type (personality). We documented temporal changes in partner availability and used a mixed model approach to analyse individual behaviours and changes in mating status recorded on an hourly basis. We assessed whether all or only a subset of individuals in the population expressed a tendency to mate with similar phenotypes. Our analyses took into account variation in the level of competition and in the phenotypes of available partners. 3. Males and females exhibited significant assortative mating by body size: the largest males and females, and the smallest males and females mated together more often than random. However, individuals of intermediate size were equally likely to mate with small, intermediate or large partners. Individuals also displayed two contrasting patterns of assortative mating by personality (activity level). Individuals generally mated preferentially with partners of similar activity level. However, beyond that general trend, individuals with more extreme personalities tended to exhibit disassortative mating: the most active males mated disproportionately with less active females, and the least active males tended to mate with more active females. 4. Our analyses thus revealed multiple, distinct patterns of non-random mating. These mating patterns did not arise from differences in partner availability among individuals and were robust to temporal changes in social conditions. Hence mating patterns likely reflect mate preferences or arise from male – male competition coupled with sexual conflict. Our study also stresses the importance of accounting for variation in partner availability and demonstrates the influence of behavioural variation on mating patterns

    Data from: Correlational selection on personality and social plasticity: morphology and social context determine behavioural effects on mating success

    No full text
    Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30–274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment
    corecore