2,048 research outputs found

    Evaluation of omniweave reinforcement for composite fabrication

    Get PDF
    Molded composites made from type-2 Morganite and/or boron are suitable for structural skins. Layered-in-depth omniweave construction yields higher in-plane strength characteristics than fiber-pitch angle construction, and strength and moduli data vary with fiber orientation

    Phase Transitions in Hexane Monolayers Physisorbed onto Graphite

    Get PDF
    We report the results of molecular dynamics (MD) simulations of a complete monolayer of hexane physisorbed onto the basal plane of graphite. At low temperatures the system forms a herringbone solid. With increasing temperature, a solid to nematic liquid crystal transition takes place at T1=138±2T_1 = 138 \pm 2K followed by another transition at T2=176±3T_2 = 176 \pm 3K into an isotropic fluid. We characterize the different phases by calculating various order parameters, coordinate distributions, energetics, spreading pressure and correlation functions, most of which are in reasonable agreement with available experimental evidence. In addition, we perform simulations where the Lennard-Jones interaction strength, corrugation potential strength and dihedral rigidity are varied in order to better characterize the nature of the two transitions through. We find that both phase transitions are facilitated by a ``footprint reduction'' of the molecules via tilting, and to a lesser degree via creation of gauche defects in the molecules.Comment: 18 pages, eps figures embedded, submitted to Phys. Rev.

    Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention

    Get PDF
    Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined

    Scattering of Phonons by a Vortex in a Superfluid

    Full text link
    Recent work gives a transverse force on an isolated moving vortex which is independent of the normal fluid velocity, but it is widely believed that the asymmetry of phonon scattering by a vortex leads to a transverse force dependent on the relative motion of the normal component and the vortex. We show that a widely accepted derivation of the transverse force is in error, and that a careful evaluation leads to a much smaller transverse force. We argue that a different approach is needed to get the correct expression. \pacs{67.40.Vs,67.57.Fg,47.37.+q,47.32.Cc}Comment: 4 page

    Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    Get PDF
    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol

    Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

    Get PDF
    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models

    Altered Trafficking of Mutant Connexin32

    Get PDF
    We examined the cellular localization of nine different connexin32 (Cx32) mutants associated with X-linked Charcot–Marie–Tooth disease (CMTX) in communication-incompetent mammalian cells. Cx32 mRNA was made, but little or no protein was detected in one class of mutants. In another class of mutants, Cx32 protein was detectable in the cytoplasm and at the cell surface, where it appeared as plaques and punctate staining. Cx32 immunoreactivity in a third class of mutants was restricted to the cytoplasm, where it often colocalized with the Golgi apparatus. Our studies suggest that CMTX mutations have a predominant effect on the trafficking of Cx32 protein, resulting in a potentially toxic cytoplasmic accumulation of Cx32 in these cells. These results and evidence of cytoplasmic accumulation of other mutated myelin proteins suggest that diseases affecting myelinating cells may share a common pathophysiology

    Negative Electron-electron Drag Between Narrow Quantum Hall Channels

    Full text link
    Momentum transfer due to Coulomb interaction between two parallel, two-dimensional, narrow, and spatially separated layers, when a current I_{drive} is driven through one layer, is studied in the presence of a perpendicular magnetic field B. The current induced in the drag layer, I_{drag}, is evaluated self-consistently with I_{drive} as a parameter. I_{drag} can be positive or negative depending on the value of the filling factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is positive for a half-filled LL. When the circuit is opened in the drag layer, a voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a negative Coulomb drag, results from energetically favored near-edge inter-LL transitions that occur when the highest occupied bulk LL and the LL just above it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures, Physical Review B, in pres

    Magnetic field processing to enhance critical current densities of MgB2 superconductors

    Get PDF
    Magnetic field of up to 12 T was applied during the sintering process of pure MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that magnetic field processing results in grain refinement, homogeneity and significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude in high field region respectively, compared to that of the non-field processed samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field processing reduces the resistivity in CNT doped MgB2, straightens the entangled CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline alignment of MgB2 was observed. This method can be easily scalable for a continuous production and represents a new milestone in the development of MgB2 superconductors and related systems

    Non-uniform doping across the Fermi surface of NbS2_2 intercalates

    Full text link
    Magnetic ordering of the first row transition metal intercalates of NbS2_2 due to coupling between the conduction electrons and the intercalated ions has been explained in terms of Fermi surface nesting. We use angle-resolved photoelectron spectroscopy to investigate the Fermi surface topology and the valence band structure of the quasi-two-dimensional layer compounds Mn1/3_{1/3}NbS2_2 and Ni1/3_{1/3}NbS2_2. Charge transfer from the intercalant species to the host layer leads to non-uniform, pocket selective doping of the Fermi surface. The implication of our results on the nesting properties are discussed
    corecore