425 research outputs found

    Pulsar-black hole binaries: prospects for new gravity tests with future radio telescopes

    Full text link
    The anticipated discovery of a pulsar in orbit with a black hole is expected to provide a unique laboratory for black hole physics and gravity. In this context, the next generation of radio telescopes, like the Five-hundred-metre Aperture Spherical radio Telescope (FAST) and the Square Kilometre Array (SKA), with their unprecedented sensitivity, will play a key role. In this paper, we investigate the capability of future radio telescopes to probe the spacetime of a black hole and test gravity theories, by timing a pulsar orbiting a stellar-mass-black-hole (SBH). Based on mock data simulations, we show that a few years of timing observations of a sufficiently compact pulsar-SBH (PSR-SBH) system with future radio telescopes would allow precise measurements of the black hole mass and spin. A measurement precision of one per cent can be expected for the spin. Measuring the quadrupole moment of the black hole, needed to test GR's no-hair theorem, requires extreme system configurations with compact orbits and a large SBH mass. Additionally, we show that a PSR-SBH system can lead to greatly improved constraints on alternative gravity theories even if they predict black holes (practically) identical to GR's. This is demonstrated for a specific class of scalar-tensor theories. Finally, we investigate the requirements for searching for PSR-SBH systems. It is shown that the high sensitivity of the next generation of radio telescopes is key for discovering compact PSR-SBH systems, as it will allow for sufficiently short survey integration times.Comment: 20 pages, 11 figures, 1 table, accepted for publication in MNRA

    Prospects for probing strong gravity with a pulsar-black hole system

    Full text link
    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems, utilizing present and future radio telescopes, like FAST and SKA.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", J. van Leeuwen (ed.); 6 pages, 3 figure

    Can we see pulsars around Sgr A*? - The latest searches with the Effelsberg telescope

    Full text link
    Radio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A*, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A* has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A*. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.Comment: 3 pages, 2 figures, Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", 201

    Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array

    Full text link
    The discovery and timing of radio pulsars within the Galactic centre is a fundamental aspect of the SKA Science Case, responding to the topic of "Strong Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004; Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for testing the General theory of Relativity and alternative gravity theories (see Wex (2014) for a recent review). Timing a pulsar in orbit around a companion, provides a unique way of probing the relativistic dynamics and spacetime of such a system. The strictest tests of gravity, in strong field conditions, are expected to come from a pulsar orbiting a black hole. In this sense, a pulsar in a close orbit (PorbP_{\rm orb} < 1 yr) around our nearest supermassive black hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of the orbit and the relativistic effects associated with it, even a slowly spinning pulsar would allow the black hole spacetime to be explored in great detail (Liu et al. 2012). For example, measurement of the frame dragging caused by the rotation of the supermassive black hole, would allow a test of the "cosmic censorship conjecture." The "no-hair theorem" can be tested by measuring the quadrupole moment of the black hole. These are two of the prime examples for the fundamental studies of gravity one could do with a pulsar around Sagittarius A*. As will be shown here, SKA1-MID and ultimately the SKA will provide the opportunity to begin to find and time the pulsars in this extreme environment.Comment: 14 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    Spin effects in gravitational radiation backreaction II. Finite mass effects

    Get PDF
    A convenient formalism for averaging the losses produced by gravitational radiation backreaction over one orbital period was developed in an earlier paper. In the present paper we generalize this formalism to include the case of a closed system composed from two bodies of comparable masses, one of them having the spin S. We employ the equations of motion given by Barker and O'Connell, where terms up to linear order in the spin (the spin-orbit interaction terms) are kept. To obtain the radiative losses up to terms linear in the spin, the equations of motion are taken to the same order. Then the magnitude L of the angular momentum L, the angle kappa subtended by S and L and the energy E are conserved. The analysis of the radial motion leads to a new parametrization of the orbit. From the instantaneous gravitational radiation losses computed by Kidder the leading terms and the spin-orbit terms are taken. Following Apostolatos, Cutler, Sussman and Thorne, the evolution of the vectors S and L in the momentary plane spanned by these vectors is separated from the evolution of the plane in space. The radiation-induced change in the spin is smaller than the leading-order spin terms in the momentary angular momentum loss. This enables us to compute the averaged losses in the constants of motion E, L and L_S=L cos kappa. In the latter, the radiative spin loss terms average to zero. An alternative description using the orbital elements a,e and kappa is given. The finite mass effects contribute terms, comparable in magnitude, to the basic, test-particle spin terms in the averaged losses.Comment: 12 pages, 1 figure, Phys.Rev.D15, March, 199

    Finding Radio Pulsars in and Beyond the Galactic Center

    Get PDF
    Radio-wave scattering is enhanced dramatically for Galactic center sources in a region with radius >~ 15 arc min. Using scattering from Sgr A* and other sources, we show that pulse broadening for pulsars in the Galactic center is {\em at least} 6.3 \nu^{-4} seconds (\nu = radio frequency in GHz) and is most likely 50--200 times larger because the relevant scattering screen appears to be within the Galactic center region itself. Pulsars beyond---but viewed through---the Galactic center suffer even greater pulse broadening and are angularly broadened by <~ 2 {\em arc min}. Periodicity searches at radio frequencies are likely to find only long period pulsars and, then, only if optimized by using frequencies >~ 7 GHz and by testing for small numbers of harmonics in the power spectrum. The optimal frequency is ν 7.3GHz(Δ0.1Pα)1/4\nu ~ 7.3 GHz (\Delta_{0.1}P\sqrt{\alpha})^{-1/4} where \Delta_{0.1} is the distance of the scattering region from Sgr A* in units of 0.1 kpc, P is the period (seconds), and \alpha is the spectral index. A search for compact sources using aperture synthesis may be far more successful than searches for periodicities because the angular broadening is not so large as to desensitize the survey. We estimate that the number of {\em detectable} pulsars in the Galactic center may range from <= 1 to 100, with the larger values resulting from recent, vigorous starbursts. Such pulsars provide unique opportunities for probing the ionized gas, gravitational potential, and stellar population near Sgr A*.Comment: 13 pages, 4 PS figures, LaTeX and requires AASTeX macro aas2pp4, accepted by ApJ, also available as http://astrosun.tn.cornell.edu/SPIGOT/papers/pulsar/gc_psr.web

    Discovery of 10 pulsars in an Arecibo drift-scan survey

    Full text link
    We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 square degrees of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity (e = 0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607 which imply that its absolute visual magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    Solving the Darwin problem in the first post-Newtonian approximation of general relativity

    Get PDF
    We analytically calculate the equilibrium sequence of the corotating binary stars of incompressible fluid in the first post-Newtonian(PN) approximation of general relativity. By calculating the total energy and total angular momentum of the system as a function of the orbital separation, we investigate the innermost stable circular orbit for corotating binary(we call it ISCCO). It is found that by the first PN effect, the orbital separation of the binary at the ISCCO becomes small with increase of the compactness of each star, and as a result, the orbital angular velocity at the ISCCO increases. These behaviors agree with previous numerical works.Comment: 33 pages, revtex, 4 figures(eps), accepted for publication in Phys. Rev.

    On the Possibility of Observing the Shapiro Effect for Pulsars in Globular Clusters

    Full text link
    For pulsars in globular clusters, we suggest using observations of the relativistic time delay of their radiation in the gravitational eld of a massive body (the Shapiro effect) located close to the line of sight to detect and identify invisible compact objects and to study the distribution of both visible and dark matter in globular clusters and various components of the Galaxy. We have derived the dependences of the event probability on the Galactic latitude and longitude of sources for two models of the mass distribution in the Galaxy: the classical Bahcall-Soneira model and the more recent Dehnen-Binney model. Using three globular clusters (M15, 47 Tuc, Terzan 5) as an example, we show that the ratios of the probability of the events due to the passages of massive Galactic objects close to the line of sight to the parameter f2 for pulsars in the globular clusters 47 Tuc and M15 are comparable to those for close passages of massive objects in the clusters themselves and are considerably higher than those for the cluster Terzan 5. We have estimated the rates of such events. We have determined the number of objects near the line of sight toward the pulsar that can produce a modulation of its pulse arrival times characteristic of the effect under consideration; the population of brown dwarfs in the Galactic disk, whose concentration is comparable to that of the disk stars, has been taken into account for the first time.Comment: 26 pages, 9 figure
    corecore