6 research outputs found

    Untersuchung MCP-3-rekombinanter Parvoviren zur Gentherapie von Krebs : Vorklinische Studien in zwei Tiermodellen

    Get PDF
    Autonome Parvoviren wie H-1 und MVMp zeichnen sich durch ihre onkotropen, onkolytischen und onkosuppressiven Eigenschaften als attraktive Vektoren zur Gentherapie von Krebs aus. Als therapeutisches Transgen wurde in dieser Arbeit das CC-Chemokin MCP-3 ausgewählt, da seine Aktivität auf eine Vielzahl von Leukozyten wie DC, Mo, NK-Zellen, T-Zelllen, eine antitumorale Wirkung vermuten läßt. Die Ergebnisse der Arbeiten zeigen das ausgeprägte antionkogene Potential von MVMp7MCP-3 und H-1/MCP-3 in Abwesenheit erkennbarer unerwünschter Nebenwirkungen. Sie ermöglichen sogar bei schwach immunogenen Tumorzellen einen vollständige Suppression der Tumorentstehung und den Stillstand des Wachstums etablierter Tumoren

    Phase I Testing of a Malaria Vaccine Composed of Hepatitis B Virus Core Particles Expressing Plasmodium falciparum Circumsporozoite Epitopes

    No full text
    We report the first phase I trial to assess the safety and immunogenicity of a malaria vaccine candidate, ICC-1132 (Malarivax), composed of a modified hepatitis B virus core protein (HBc) containing minimal epitopes of the Plasmodium falciparum circumsporozoite (CS) protein. When expressed in Escherichia coli, the recombinant ICC-1132 protein forms virus-like particles that were found to be highly immunogenic in preclinical studies of mice and monkeys. Twenty healthy adult volunteers received a 20- or a 50-μg dose of alum-adsorbed ICC-1132 administered intramuscularly at 0, 2, and 6 months. The majority of volunteers in the group receiving the 50-μg dose developed antibodies to CS repeats as well as to HBc. Malaria-specific T cells that secreted gamma interferon were also detected after a single immunization with ICC-1132-alum. These studies support ICC-1132 as a promising malaria vaccine candidate for further clinical testing using more-potent adjuvant formulations and confirm the potential of modified HBc virus-like particles as a delivery platform for vaccines against other human pathogens

    Safety and Enhanced Immunogenicity of a Hepatitis B Core Particle Plasmodium falciparum Malaria Vaccine Formulated in Adjuvant Montanide ISA 720 in a Phase I Trial

    No full text
    Highly purified subunit vaccines require potent adjuvants in order to elicit optimal immune responses. In a previous phase I trial, an alum formulation of ICC-1132, a malaria vaccine candidate comprising hepatitis B core (HBc) virus-like particle containing Plasmodium falciparum circumsporozoite (CS) protein epitopes, was shown to elicit Plasmodium falciparum-specific antibody and cellular responses. The present study was designed as a single-blind, escalating-dose phase I trial to evaluate the safety and immunogenicity of single intramuscular doses of ICC-1132 formulated in the more potent water-in-oil adjuvant Montanide ISA 720 (ICC-1132/ISA 720). The vaccine was safe and well tolerated, with transient injection site pain as the most frequent complaint. All vaccinees that received either 20 μg or 50 μg of ICC-1132/ISA 720 developed antiimmunogen and anti-HBc antibodies. The majority of volunteers in these two groups developed sporozoite-specific antibodies, predominantly of opsonizing immunoglobulin G subtypes. Peak titers and persistence of parasite-specific antibody following a single injection of the ISA 720 formulated vaccine were comparable to those obtained following two to three immunizations with alum-adsorbed ICC-1132. Peripheral blood mononuclear cells of ICC-1132/ISA 720 vaccinees proliferated and released cytokines (interleukin 2 and gamma interferon) when stimulated with recombinant P. falciparum CS protein, and CS-specific CD4(+) T-cell lines were established from volunteers with high levels of antibodies to the repeat region. The promising results obtained with a single dose of ICC-1132 formulated in Montanide ISA 720 encourage further clinical development of this malaria vaccine candidate

    U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics

    Get PDF
    Background: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided. Objectives: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum. Methods: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data. Results: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels. Conclusion: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways

    IL-17–high asthma with features of a psoriasis immunophenotype

    No full text
    corecore