1,137 research outputs found
The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire
An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe
the dynamics of inhomogeneous magnetization in a current-carrying wire. The
coefficients of all the terms in this equation are calculated
quantum-mechanically for a simple model which includes impurity scattering.
This is done by comparing the energies and lifetimes of a spin wave calculated
from the LLG equation and from the explicit model. Two terms are of particular
importance since they describe non-adiabatic spin-transfer torque and damping
processes which do not rely on spin-orbit coupling. It is shown that these
terms may have a significant influence on the velocity of a current-driven
domain wall and they become dominant in the case of a narrow wall.Comment: 19 pages, 1 figur
Current driven magnetization dynamics in helical spin density waves
A mechanism is proposed for manipulating the magnetic state of a helical spin
density wave using a current. In this paper, we show that a current through a
bulk system with a helical spin density wave induces a spin transfer torque,
giving rise to a rotation of the order parameter.The use of spin transfer
torque to manipulate the magnetization in bulk systems does not suffer from the
obstacles seen for magnetization reversal using interface spin transfer torque
in multilayered systems. We demonstrate the effect by a quantitative
calculation of the current induced magnetization dynamics of Erbium. Finally we
propose a setup for experimental verification.Comment: In the previous version of this paper was a small numerical mistake
made when evaluating equation 3 and 9. The number of digits given in the
calculation of the torque current tensor is reduced to better represent the
accuracy of the calculation. A slightly modified paper have been published in
Phys. Rev. Lett. 96, 256601 (2006) 4 pages 3 figure
Neural Induction in Xenopus: Requirement for Ectodermal and Endomesodermal Signals via Chordin, Noggin, β-Catenin, and Cerberus
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early β-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator β-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula β-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer
Scalar spectral functions from the spectral fRG
We compute non-perturbative spectral functions in a scalar -theory in
three spacetime dimensions via the spectral functional renormalisation group.
This approach allows for the direct, manifestly Lorentz covariant computation
of correlation functions in Minkowski spacetime, including a physical on-shell
renormalisation. We present numerical results for the spectral functions of the
two- and four-point correlation functions for different values of the coupling
parameter. These results agree very well with those obtained from another
functional real-time approach, the spectral Dyson-Schwinger equation.Comment: 22 pages, 13 figure
Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts
AbstractThe kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney
Evaluation of three different methods of distance learning for postgraduate diagnostic imaging education: A pilot study
Objective : The purpose of this study was to evaluate the perceived effectiveness and learning potential of 3 Web-based educational methods in a postgraduate radiology setting. Methods : Three chiropractic radiology faculty from diverse geographic locations led mini-courses using asynchronous discussion boards, synchronous Web conferencing, and asynchronous voice-over case presentations formatted for Web viewing. At the conclusion of each course, participants filled out a 14-question survey (using a 5-point Likert scale) designed to evaluate the effectiveness of each method in achieving specified course objectives and goals and their satisfaction when considering the learning potential of each method. The mean, standard deviation, and percentage agreements were tabulated. Results : Twenty, 15, and 10 participants completed the discussion board, Web conferencing, and case presentation surveys, respectively. All educational methods demonstrated a high level of agreement regarding the course objective (total mean rating >4.1). The case presentations had the highest overall rating for achieving the course goals; however, all but one method still had total mean ratings >4.0 and overall agreement levels of 70%-100%. The strongest potential for interactive learning was found with Web conferencing and discussion boards, while case presentations rated very low in this regard. Conclusions : The perceived effectiveness in achieving the course objective and goals was high for each method. Residency-based distance education may be a beneficial adjunct to current methods of training, allowing for international collaboration. When considering all aspects tested, there does not appear to be a clear advantage to any one method. Utilizing various methods may be most appropriate
Sum rules for X-ray magnetic circular dichroism spectra in strongly correlated ferromagnets
It is proven that the sum rules for X-ray magnetic dichroism (XMCD) spectra
that are used to separate spin and orbital contributions to the magnetic moment
are formally correct for an arbitrary strength of electron-electron
interactions. However, their practical application for strongly correlated
systems can become complicated due to the spectral density weight spreading
over a broad energy interval. Relevance of incoherent spectral density for the
XMCD sum rules is illustrated by a simple model of a ferromagnet with orbital
degrees of freedom.Comment: 4 pages, final versio
Bound states from the spectral Bethe-Salpeter equation
We compute the bound state properties of three-dimensional scalar
theory in the broken phase. To this end, we extend the recently developed
technique of spectral Dyson-Schwinger equations to solve the Bethe-Salpeter
equation and determine the bound state spectrum. We employ consistent
truncations for the two-, three- and four-point functions of the theory that
recover the scaling properties in the infinite coupling limit. Our result for
the mass of the lowest-lying bound state in this limit agrees very well with
lattice determinations.Comment: 15 pages, 16 figure
- …