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Abstract. I t  is proven th a t  th e  sum  rules for X -ray  m agnetic  dichroism  (X M C D ) sp ec tra  th a t  are used 
to  separa te  sp in  and  o rb ita l con tribu tions to  th e  m agnetic  m om ent are form ally correct for an  a rb itra ry  
s tre n g th  of elec tron-electron  in terac tions. However, th e ir  p rac tica l app lica tion  for strongly  co rre la ted  sys­
tem s can  becom e com plicated  due to  th e  spec tra l density  w eight sp read ing  over a b road  energy interval. 
R elevance of incoheren t sp ec tra l density  for th e  X M C D  sum  rules is illu s tra ted  by a sim ple m odel of a 
ferrom agnet w ith  o rb ita l degrees of freedom .

PACS. 78.70.D m  X -ray abso rp tion  sp ec tra  -  78.70.En X -ray em ission sp ec tra  and  fluorescence -  75.30.M b 
V alence fluc tuation , K ondo la ttice , and  heavy-ferm ion phenom ena -  71 .28 .+ d  N arrow -band  system s; 
in term ediate-valence solids

X-ray magnetic circular dichroism (XMCD) [1,2] is a 
powerful technique to investigate both bulk and surface 
magnetic properties of materials. In particular, it allows 
to  measure separately spin and orbital contributions to 
the magnetic moment of ferromagnets. Examples of nu­
merous applications of this method are recent studies of 
magnetism in thin metallic films [3], cobalt nanoparticles 
and clusters [4], in magnetite Fe3Ü4 [5], and in dilute mag­
netic alloys [6]. A concrete way to  separate the orbital and 
spin magnetic moments is using the XMCD sum rules [7, 
8 ,2]

3Nh

2 N h

ƒ dw (Zi/iL3 -  2Z\yltL2 ) 
ƒ dui (¿4°/ +  t f g )

f  dw (A » l3 -  2 A » l2) 
ƒ dv (m-tot

L; mL?)

{Sz ) +  7 {Tz )

=  {Lz ) (1)

where Nh is the number of holes in d-band, ml2 3 (v) are 
spectral intensities for L2 3 spectra, Am is the difference 
between the spectra for left and right circularly polar­
ized radiation and Mtot is the total absorption intensity 
for unpolarized one, Sz, Lz and Tz are projections of the 
total spin, orbital moment and the spin dipole operator 
on the magnetization direction: S =  ^  si , L =  ^  li , T  =

i i
(si — 3ri (risi ) / r 2) with si and li being the spin and

i
orbital moments for i-th electron, ri the coordinate oper­
ators.

A simple derivation of the XMCD sum rules in the in­
dependent electron approximation was presented in Ref. [9]. 
This derivation is based on a purely band picture of elec­

tron states in solids. The opposite case of strongly local­
ized electrons which are characterized by atomic states 
with well-defined term  and multiplet structure has been 
considered in Refs. [7,10] (a somewhat more simple deriva­
tion with the use of second quantization formalism for 
the atomic states was presented in the paper [8]). At the 
same time, many interesting systems such as magnetite 
[5] should be considered as strongly correlated systems 
demonstrating simultaneously both itinerant and local­
ized features of “magnetic” electrons [11,12]. Actually, 
the sum rules are widely exploited by experimentalists 
for such systems as well. In this work we present a for­
mal justification of this simple way to proceed. At the 
same time, we discuss separately contributions to the sum 
rules from coherent and incoherent parts of the electron 
spectral density. We demonstrate tha t a proper account 
of the incoherent (nonquasiparticle) contributions is nec­
essary for consistent treatm ent of the XMCD spectra of 
strongly correlated systems.

The spectral intensity m(v ) of the X-ray absorption 
and emission spectra (XAS and XES, respectively) is de­
termined in the dipole approximation by the imaginary 
part of the Green’s function [13,14]

{{p • e* |p • e))w =  ea eßGaß  (w) (2)

Gaß  (v) =  {{PalPß ) )u =  —i ƒ  dteiWt {[Pa (t) , Pß ]) (3)
0

where e is the photon polarization vector and p is the 
momentum operator, a ,  ß  are the Cartesian indices and 
the brackets stand for the Gibbs average in the initial
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state. For the case of XAS only the part of this opera­
tor works which corresponds to the transitions from core 
states |a) (with the annihilation operators ba) to the con­
duction electron states |A) created by operator cj

p i+)
aX

(A| p a |a) cXba, (4)

and only the Hermitian conjugated part p i  ) works for 
the XES. For the case of L2(L3) spectra a labels total mo­
ment projection for 2p i/2 (2p3/ 2) states, correspondingly, 
and A labels spin projection and orbital indices for 3d- 
electrons. Transitions to s-states, which are also allowed in 
the dipole approximation, are irrelevant for magnetism (in 
particular, they practically do not contribute to XMCD) 
and therefore will be neglected further.

It is im portant tha t Eqs.(3), (4) are formally exact ir­
respective to the degree of localization or delocalization 
of d-electrons. The use of the atomic representation for 
the states | A) allows to  obtain explicit expressions for the 
matrix elements (A|p a |a) in terms of 3 n j -symbols, frac­
tional parentage coefficients and irreducible m atrix ele­
ments [7,8 ,10]. However, for the derivation of the sum 
rules such a concretization is not necessary and using the 
A-representation yields a simpler way to proceed. Actually, 
total intensities of the XAS for different photon polariza­
tions which are needed to obtain the XMCD sum rules are 
determined by the integrals of the spectral density in the 
infinite limits. Due to the Kramers-Kronig relations, the 
latter are equal to

O
/ du

— l m G a ß ( u j )=  lim [ujReGa ß (uj)\ =  {[pa ,pß]) 
n

—o

(5)
Here we have used the equations of motion for the Green’s 
functions [14]. On substituting E q.(4) into the right-hand 
side of E q.(5) one can see tha t the commutator contains 
just the one-particle density matrices which are expressed 
in terms of the corresponding anticommutator Green’s 
functions:

PA'A =  <4cv> =  -  ƒ ^ f ( E ) l m ( ( c y \ c { ) ) E (6)

where f  (E) is the Fermi function; similarly we introduce 
the core density matrix

pCore 
p a' a (ba ba (7)

Assuming tha t in the initial state the core electron states 
are completely occupied, i.e., paare =  ^aa' , one can receive 
the expression for the total spectral weight (integrated 
intensity) of L2 3 spectra:

=  2n E ( j m j \ l m ^ a ) ( l m ^ a \ p  • e* (8)
mj mam’ a’

X ( î  -  p)P  • e | I r n ' - a 1) (I m ' - a ' l j m j )

which differs from Eq.(2) of Ref. [9] only by the replace­
ment of one-electron expression for the density matrix 
pmm' by the exact one. Here l =  2, j  =  1/2 (3/2) for 
L2 (L3) spectra, m , m '  and a, a '  are the orbital and spin 
projections of d-electrons, respectively, m j is the total 
moment projection for the core states. It is worthwhile 
to stress tha t using the orbital indices for itinerant elec­
trons does not mean any approximation: for any partic­
ular method of band structure calculations it is always 
possible to re-expand the Wannier functions at a given 
site into the spherical harmonics. Thus the density ma­
trix pmm' is in general a linear combination of the band 
structure occupation numbers with a proper symmetry. 
Since the total spin and orbital moment as well as the spin 
dipole operator are one-particle operators, their averages 
are completely determined by the density matrix. Further 
use of the Wigner-Eckart theorem to extract angular de­
pendences of the m atrix elements and transformations of 
the arising 3j-symbol products repeat the derivation in 
Ref. [9]. Therefore the XMCD sum rules (1) are formally 
valid without any restrictions.

On the other hand, the values of (S z ) and ( L z ) ob­
tained in band calculations can violate the sum rules. The 
calculation of the one-particle density matrix for strongly 
correlated systems remains a quite nontrivial problem. 
Generally, this quantity contains both coherent (quasipar­
ticle) contributions which are formally connected with the 
poles of the Green’s function and incoherent (nonquasipar­
ticle) ones which are formally connected with the branch 
cuts [15]. In a number of cases (for example, for strongly 
correlated metals in the vicinity of the Mott transition or 
for doped Mott insulators [16]) the quasiparticle spectral 
density is much narrower than the incoherent one. One 
should be therefore careful to avoid a confusion of the in­
coherent part with a spectrum background.

In practice, the use of the XMCD sum rules for strongly 
correlated systems is not a completely well-defined proce­
dure since it is impossible to integrate the spectral density 
in infinite limits. Atomic multiplet structure leads some­
times to much broader distribution of the spectral den­
sity in comparison with a standard band picture. This 
fact has been recently demonstrated [17] for the case of 
(La,Sr)MnO3 where the configuration-interaction calcu­
lations for Mn3+ ion gave the spectral density with the 
width of order of 6^7  eV, in comparison with the value 
2^3  eV within the local density approximation (LDA) or 
LDA+U. At the same time, the energy separation between 
L2 and L3 spectra varies from 6^8  eV for the light 3d met­
als (Ti, V) to 15^20 eV for heavy ones (Co, Ni, and Cu). 
This means tha t for strongly correlated systems L2 and 
L3 spectra can overlap appreciably. The energy distribu­
tion of the atomic multiplet structure can be comparable 
with the spin-orbit splitting of the relevant core levels also 
for rare earth systems which leads to some problems with 
the practical applications of the XMCD sum rules in the 
latter case [18].

It is a common practice to interpret the core-level spec­
tra  for isolated atoms in terms of many-electron multi­
plet picture rather than one-electron quantum  numbers
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| A) used above. These two approaches can be related via 
the representation of one-electron operators in terms of 
the Hubbard X-operators [19] X r , r ' =  |r ) ( r '| where r  =  
{ n L S M S } labels atomic configuration n, term  LS and 
moment projections M, S  :

Clmcr =  53 V ñ G p ^  ^ ^ n M A L n - l M n - i l m )

n r n r n-1

x { S n E n \Sn- i 2 n - i ^ < r ) X r ”’r ”- 1 (9)

where 1 are the fractional parentage coefficients (see 
Refs. [20,21]). E q.(9) enables one to reproduce the sum 
rules in the form yielding a detailed information concern­
ing term  and multiplet structure [7,8 ,10].

At the same time, for a solid the atomic description 
can be inappropriate. In particular, ferromagnetism itself 
is an essentially band phenomenon. Moreover, it cannot be 
properly described in the simplest Hubbard-I approxima­
tion [22] which assumes a formation of individual Hubbard 
subbands from separate transitions between the atomic 
levels. In particular, for a narrow-band ferromagnet we 
cannot satisfy the sum rules (kinematic relations) for the 
X-operators in this approximation.

To demonstrate this we consider a simple model of 
a narrow-band itinerant electron ferromagnet with orbital 
degrees of freedom which generalizes the standard infinite­
U Hubbard model:

h = £  tkmX—>amx r ’° (10)
kma

where t km  is the orbital-dependent band energy, X ^ ’̂  is 
the Fourier transform of the Hubbard operators and 0 
labels the hole state at a site.

For this model the exact sum rules should be satisfied 
for arbitrary m , a :

X _ /x^°’°\ / v ° ’ffm v am,°\ \  '  / v °,am v am,°\ö =  n ° = ( x  ’ ) =  ( x i ’ x i ’ ) =  ( x _k x k ’ )
k

+ O

= - £  ƒ  ^ f m M ( x r ' ° \ x 0-n )E -  (n) 
kk —O

where ö is the concentration of current carriers (holes). 
The Hubbard-I approximation for this model reads

( (x a m’° |x ° k m ) ) e  =  [E -  tkm(N° +  Nam  )] —1. (12)

According to this expression, the quasiparticle pole for 
a  = |  corresponds to a narrowed band and lies (for the 
saturated ferromagnet case) above the Fermi level of the 
holes which obviously violates the sum rule (11). In fact, 
these sum rules are satisfied only due to incoherent (non­
quasiparticle) states which are present below the Fermi 
level for the Hubbard model [23]. Similar to these papers 
one obtains for the minority-spin Green’s functions in the 
leading order in small param eter ö

-  Ílm(<x ¿m’°|x !’¿m))B

— ^   ̂f  (Ek—q ]m' )ö(E Ek—q ]m' +  ^q m m ' ) . (13) 
qm'

where Ek| m =  t km(N° +  N |m), wqmm' are the frequencies 
of the corresponding spin-flip transitions. Thus we have 
100% incoherent contribution to the spectral density be­
low the Fermi level. As the hole concentration increases, 
the ferromagnetic state becomes non-saturated and a nar­
row quasiparticle minority-spin band occurs [24]. How­
ever, the main spectral density for this spin projection is 
still due to the nonquasiparticle contribution. This exam­
ple demonstrates that, despite the XMCD sum rules for 
strongly correlated ferromagnets have formally a standard 
“one-electron” form, the energy distribution of the spec­
tral weight can be drastically different from usual band 
picture.

The theoretical consideration [25] shows tha t the non­
quasiparticle contributions to XES and XAS should be 
clearly observed. Moreover, such contributions should be 
considerably enhanced by the interaction with the core 
hole [25]. As well as for XES and XAS in general, the 
main nonquasiparticle effects in the XMCD are connected 
with the occurrence of the incoherent spectral density in 
the energy gap for the half-metallic ferromagnets [26]. 
These states arise either only below the Fermi energy 
(for the majority-gap half-metallic ferromagnets such as 
magnetite) or only above it (for the minority-gap half- 
metallic ferromagnets such as Heusler alloys or CrO2); 
therefore they can be studied by XES and XAS meth­
ods, correspondingly. Whereas a standard band theory 
predicts 100% polarization for the conduction electron (or 
hole) states, the depolarization due to the nonquasiparti­
cle states can be very strong (for example, in the infinite-U 
Hubbard model limit there is no polarization at all [23]). 
At the same time, ab in it io  calculations of the correlation 
effects for the half-metallic Heusler alloy NiMnSb give a 
rather small spectral weight of the nonquasiparticle states 
(about 4%) [27] and therefore it would be preferable to 
investigate them  for the half-metallic ferromagnets with 
more strong correlations such as Fe3O4 (by XES) and 
CrO2 (by XAS).

The research described was supported in part by Grant 
No. 747.2003.2 from the Russian Basic Research Founda­
tion (Support of Scientific Schools), by Russian Science 
Support Foundation and by the Netherlands Organization 
for Scientific Research (Grant NWO 047.016.005).
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