71 research outputs found

    Dietary calcium and zinc deficiency risks are decreasing but remain prevalent

    Get PDF
    Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement

    Assessing national nutrition security

    Get PDF
    Funding: The author(s) received no specific funding for this work. JIM and SW acknowledge funding from the Scottish Government’s Rural and Environment Science Analytical Services Strategic Research Programme. HC acknowledges funding from the Fondation Daniel & Nina Carasso. This work contributes to the Belmont Forum/FACCE-JPI funded DEVIL project (Natural Environment Research Council grant number NE/M021327/1) (JIM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Genetic Enhancement Perspectives and Prospects for Grain Nutrients Density

    Get PDF
    Diet-induced micronutrient malnutrition continues to be a major challenge globally, especially in the developing world. With the ever-increasing population, it becomes a daunting task to feed millions of mouths with nutritious food. It is time to reorient agricultural systems to produce quality food to supply the calorie and nutrient requirements needed by the human body. Biofortification is the process of improving micronutrients density by genetic means. It is cheaper and sustainable and complements well with the nutrient supplementation and fortification— the short-term strategies that are currently deployed to address the micronutrient malnutrition. Sorghum is one of the important food crops globally, adapted to semi-arid tropics, and there is increased awareness on its nutritional importance. Further, there is great opportunity to improve sorghum for nutritional quality. This chapter deals about the genetic enhancement perspectives and prospects for improving the nutritional quality with main emphasis on grain micronutrient density in sorghum

    Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat

    Get PDF
    Wheat is an important dietary source of zinc (Zn) and other mineral elements in many countries. Dietary Zn deficiency is widespread, especially in developing countries, and breeding (genetic biofortification) through the HarvestPlus programme has recently started to deliver new wheat varieties to help alleviate this problem in South Asia. To better understand the potential of wheat to alleviate dietary Zn deficiency, this study aimed to characterise the baseline effects of genotype (G), site (E), and genotype by site interactions (GxE) on grain Zn concentration under a wide range of soil conditions in India. Field experiments were conducted on a diverse panel of 36 Indian-adapted wheat genotypes, grown on a range of soil types (pH range 4.5–9.5), in 2013–14 (five sites) and 2014–15 (six sites). Grain samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The mean grain Zn concentration of the genotypes ranged from 24.9–34.8 mg kg-1, averaged across site and year. Genotype and site effects were associated with 10% and 6% of the overall variation in grain Zn concentration, respectively. Whilst G x E interaction effects were evident across the panel, some genotypes had consistent rankings between sites and years. Grain Zn concentration correlated positively with grain concentrations of iron (Fe), sulphur (S), and eight other elements, but did not correlate negatively with grain yield, i.e. no yield dilution was observed. Despite a relatively small contribution of genotype to the overall variation in grain Zn concentration, due to experiments being conducted across many contrasting sites and two years, our data are consistent with reports that biofortifying wheat through breeding is likely to be effective at scale given that some genotypes performed consistently across diverse soil types. Notably, all soils in this study were probably Zn deficient and interactions between wheat genotypes and soil Zn availability/management (e.g. the use of Zn-containing fertilisers) need to be better-understood to improve Zn supply in food systems

    Conventional and Molecular Breeding Approaches for Biofortification of Pearl Millet

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is an essential diet of more than 90 million people in the semi-arid tropics of the world where droughts and low fertility of soils cause frequent failures of other crops. It is an important nutri-rich grain cereal in the drier regions of the world grown on 26 mha by millions of farmers (IFAD 1999; Yadav and Rai 2013). This makes pearl millet the sixth most important crop in the world and fourth most important food crop of the India, next to rice, wheat, and maize with annual cultivation over an area of ~8 mha. Pearl millet is also primary food crop in sub-Saharan Africa and is grown on 15 mha (Yadav and Rai 2013). The significant increase in productivity of pearl millet in India is attributed to development and adoption of hybrids of early to medium duration maturity. More than 120 diverse hybrids/varieties have been released till date for various production environments. The heterosis breeding and improved crop management technologies increased productivity substantially achieving higher increased production of 9.80 mt in 2016–2017 from 2.60 mt in 1950–1951 in spite of declined of area under the crop by 20–30% over last two decades (Yadav et al. 2012)
    • 

    corecore