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Dietary calcium and zinc deficiency 
risks are decreasing but remain 
prevalent
Diriba B. Kumssa1,2,3, Edward J. M. Joy1,2, E. Louise Ander2, Michael J. Watts2, 
Scott D. Young1, Sue Walker3 & Martin R. Broadley1

Globally, more than 800 million people are undernourished while >2 billion people have one or 
more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity 
burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 
billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate 
dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg 
capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn 
decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and 
Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates 
of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and 
Zn deficiency risks through dietary diversification and food and agricultural interventions including 
fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge.

Food security is essential to human wellbeing1–4 and a central component of the Millennium Development 
Goals (MDGs) of the United Nations (UN)5. Food security exists when “all people, at all times, have 
physical, social and economic access to sufficient safe and nutritious food that meets their dietary needs 
and food preferences for an active and healthy life”4 and therefore includes consideration of the macro 
and micro-nutrient components of the diet. For example, > 800 million people are undernourished6, and 
> 2 billion people are likely to be at risk of one or more micronutrient deficiencies (MNDs), notably the 
minerals Ca, iodine (I), iron (Fe), selenium (Se), Zn, and vitamins (e.g. vitamin A)1,3,7–10. Micronutrients 
have pivotal roles in human health and MNDs can retard growth and cognitive development, impair 
immunological functioning and increase the risks of non-communicable diseases including skeletal, car-
diovascular and metabolic disorders10,11. It has been estimated that Fe and Zn deficiency reduce the 
Gross Domestic Product (GDP) of developing countries by 2–5%1. Although the estimated prevalence 
of inadequate dietary energy supply decreased from 18.7% to 11.3% at global and 23.4% to 13.5% for 
developing countries between 1990/2 and 2011/146, trends in MNDs for all essential mineral nutrients 
at various geospatial scales have not been quantified over this period.

Determining the prevalence of MNDs is challenging12. For some micronutrients (e.g. Fe, I, Se, Zn), body 
tissues or urine can be analysed directly for micronutrients and micronutrient-responsive enzymes9,10,13. 
Where reliable tissue biomarkers are lacking and for larger population sizes, MND risks can be quanti-
fied from dietary analyses or surveys incorporating food composition data14. However, many countries 
lack nationally-representative surveys and food composition tables. Data from surveys are also affected 
by behavioural change and systematic misreporting15. The Food and Agriculture Organization (FAO) of 
the United Nations (UN) uses national food balance sheets (FBSs) as a proxy for food consumption to 
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estimate the global prevalence of undernourishment16. The FBSs of the FAO are currently available from 
1961–201117 and represent net per capita food supply calculated from national production, trade, trans-
port losses, storage, non-food uses, livestock feed, etc., but with no adjustment for household waste or 
inter- and intra-household variation in access to food18. Per capita micronutrient supply can be estimated 
by multiplying the edible portion of each food item (derived from energy values provided by the FAO 
in kcal capita−1 d−1)7 by its micronutrient concentration compiled in food composition tables19,20. The 
per capita supply of a mineral is then compared to a demographically-weighted requirement threshold 
for a population, termed the WtdEAR, which represents the daily intake that meets the requirements of 
half the healthy individuals in that population21,22. FBS and food composition data were used to estimate 
a global prevalence of dietary Zn deficiency of 17% in 2003–077, however, the prevalence of dietary Ca 
deficiency has not previously been reported.

Here, the prevalence of Ca and Zn deficiency risks and their recent temporal trends were determined 
for 145 countries with populations > 1 million. Food supply data (see Supplementary Table S1 online) 
for 94 food items (see Supplementary Table S2 online) between 1992 and 2011 were integrated with food 
composition data for Ca and Zn from the United States Department of Agriculture19, and phytate data 
from Tanzania20 (see Supplementary Table S3 online). Food composition data were assumed to remain 
constant over time and location. Intakes of Ca and Zn were based on per capita supply adjusted for edible 
portions using per capita energy supply data (see Supplementary Table S4 online). An inter-individual 
coefficient of variation of 25% was applied to net food supply7,8,22. Demographic (age and gender dis-
tributions) data were obtained from the UN Department of Economic and Social Affairs Population 
Division23 (see Supplementary Table S5 online). A single WtdEAR per country was estimated for each 
element and year from World Health Organization (WHO) vitamin and mineral requirements data21 (see 
Supplementary Table S6 online). Thus, the WtdEAR changes slightly between countries and years due to 
the difference in the population composition and size of the various countries although the EAR for each 
age/gender group did not change with time. Those with intakes of Ca and Zn less than the WtdEAR were 
classed as being at risk of dietary deficiency. This approach assumes (1) minimal correlation between 
requirement and intake, (2) that the distribution of requirement is symmetrical around the WtdEAR, 
(3) that the variability in intake is greater than the variability in requirement8,12. Data were analysed and 
visualised using Microsoft Excel 2013, Microsoft Access 2013, IBM SPSS Statistics 21, Tableau Software 
8.2, and ArcGIS 10.2.1. For regional-, continental- and global-level analyses, national-level data were 
weighted by the population size of each country.

Results and discussion
The supplies and deficiency risks of Ca and Zn are presented at various spatial (global, continental, 
regional and country), and temporal (from 1992 to 2011) scales (means  ±  SD unless stated).

Calcium supply and deficiency risk. At a global scale, in 2011, Ca supply was 684 ±  211 mg cap-
ita−1 d−1 and Ca deficiency risk was 51 ±  32% (3.5 billion people). In 1992, Ca supply was 547 ±  230 
mg capita−1 d−1 and Ca deficiency risk was 76 ±  23% (4.1 billion people) (see Supplementary Table S7 
online). These reflect an overall increase in global food supply between 1992 and 201124,25. In 2011, the 
WtdEAR for Ca at a global level was 644 ±  3 mg d−1. At a continental scale, Ca supply in 2011 was 
474 ±  188, 858 ±  234, 639 ±  223, 982 ±  130, and 936 ±  50 mg capita−1 d−1 for Africa, Americas, Asia, 
Europe, and Oceania respectively (see Supplementary Table S8 online). The mean Ca deficiency risk in 
2011 was 80 ±  31, 29 ±  27, 57 ±  36, 11 ±  7 and 11 ±  4% for Africa, Americas, Asia, Europe and Oceania 
respectively (see Supplementary Table S8 online). Regionally, Ca supply in 2011 ranged from 356 ±  295 
mg capita−1 d−1 in South-Eastern Asia to 1126 ±  269 mg capita−1 d−1 in Northern America, representing 
Ca deficiency risks of 98 ±  3 and 4 ±  1% (Figs.  1 and 2 and see Supplementary Table S9 online). At a 
country level, Ca supply ranged from 157 mg capita−1 d−1 in Mozambique in 1992 to 1640 mg capita−1 
d−1 in the United States of America in 1994 (Supplementary Table S 6). In 1992, 86 out of 137 coun-
tries had Ca deficiency risk > 50%, which decreased to 69 out of 145 countries in 2011 (Fig. 1; and see 
Supplementary Table S6 online).

To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on data 
for food supply, food composition, demography and EAR. In a study conducted in Africa by Joy et al.12, 
the deficiency risk of Ca was estimated to be 54%, compared to our estimate of 82% in 2009. This dis-
parity can be attributed to the different food composition table used by Joy et al.12 because similar food 
supply, demographic and EAR data were used. However, there is general agreement about the existence 
of high Ca deficiency risk in Africa between the two studies. Interestingly, in a recent analysis of all 
age- sex- and country-specific groups from 187 countries26 (4862 observations), the median Ca intake 
was 611 (third-quintile range 553-658) mg capita d−1. These data are based on dietary recall surveys of 
milk consumption, as a proxy for Ca intake, but are remarkably consistent with our estimates of mean 
Ca intake based on food supply26.

Animal products were the major sources of dietary Ca, but there is variation between regions (see 
Supplementary Fig. S1 online). For example, in Central, North and South America, Central Asia, Europe, 
and Oceania, 50–70% of dietary Ca supply was from animal products. Fruits and vegetables contributed 
10–40% of dietary Ca supply, but had a higher contribution in some regions (e.g., > 50% in Eastern 
Asia, see Supplementary Fig. S1 online). Cereals contributed little Ca to the diet. The changes in the 
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proportional dietary sources of Ca between 1992 and 2011 was small in most of the regions, reflecting 
food production and supply systems that are generally consistent over the time period.

Given the high prevalence of Ca deficiency risks, an important question is whether these translate into 
detrimental health outcomes such as rickets, which can be caused by vitamin D and/or Ca deficiency, 
or osteoporosis. A review by Pettifor27 indicated that nutritional rickets was more prevalent in infants 
and children in developing countries where the diet is based on cereal staples and the phytate content is 
high. In mid-latitude countries, where there is adequate sunlight to enable the production of vitamin D 
in the skin, rickets is mainly attributed to Ca deficiency unless exposure to sun is limited due to religious 
and cultural reasons28. Norhaizan and Nor Faizadatul29 reported 2.4 million cases of osteoporosis due to 
Ca deficiency in Malaysia in 2009, where Ca deficiency is likely to be prevalent based on Ca supply. It is 
noteworthy that when Ca intakes are low, the efficiency of Ca homeostasis can increase through reduced 
Ca excretion, thereby enabling populations with low intake of Ca to maintain a healthy skeleton and 
teeth30. Conversely, in populations with high intakes of animal products with high calcium and protein, 
and high sodium intakes, urinary Ca excretion increases balancing the plasma Ca30,31. Hence the mani-
festations of Ca deficiency risk in the form of rickets and osteoporosis may not be as conspicuous as the 
observed Ca deficiency risks. Clearly, there are many complex issues surrounding dietary Ca deficiency 
risk, which warrant much further investigation.

Zinc supply and deficiency risk. At a global scale, in 2011, Zn supply was 16 ±  3 mg capita−1 d−1 
and Zn deficiency risk was 16 ±  14% (1.1 billion people). In 1992, Zn supply was 15 ±  3 mg capita−1 d−1 
and Zn deficiency risk was 22 ±  19% (1.2 billion people) (see Supplementary Table S7 online). As seen 
for Ca, these data reflect an overall increase in global food supply between 1992 and 201124,25. In 2011, 
the WtdEAR for Zn at a global level was 10.3 ±  0.1 mg capita−1 d−1. At a continental scale, Zn supply in 
2011 was 14 ±  4, 18 ±  3, 15 ±  4, 19 ±  2, and 20 ±  0 mg capita−1 d−1 for Africa, Americas, Asia, Europe, 
and Oceania respectively (see Supplementary Table S8 online). The mean Zn deficiency risk in 2011 

Figure 1. Ca supply (mg capita−1 d−1) and deficiency risk (%). Calcium supply in 1992 (a) and 2011 (c). 
Calcium deficiency risk in 1992 (b) and 2011 (d). Country boundaries were downloaded from the GADM 
Global Administrative Areas database (http://gadm.org/, Version 2, January 2012). Thematic mapping of Ca 
supply and deficiency risk was carried out in ArcGIS 10.2.1.

http://gadm.org/
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was 25 ±  20%, 7 ±  10%, 17 ±  14%, 3 ±  2%, and 2 ±  0% for Africa, Americas, Asia, Europe and Oceania 
respectively. Regionally, Zn supply in 2011 ranged from 12 ±  6 mg capita−1 d−1 in Caribbean to 22 ±  7 mg 
capita−1d−1 in Central Asia, Zn deficiency risks ranged from 2 ±  0% in Australia and New Zealand to 
36 ±  38% in Caribbean (Figs.  3 and 4 and see Supplementary Table S9 online). At country level, Zn 
supply ranged from 6 mg capita−1 d−1 in Rwanda in 1998 to 28 mg capita−1 d−1 in Uruguay in 1994, 
representing Zn deficiency risks of ~100% and 1% respectively (see Supplementary Table S6 online). In 
1992, 48 out of 137 countries had Zn deficiency risk > 25%, which decreased to 39 out of 145 countries 
in 2011 (Fig. 3 and see Supplementary Table S6 online).

Our estimate of Zn deficiency risk (20%) is comparable to Wessells et al.7,32 global estimate of 17.3% 
in 2003-07 where they accounted for the impact of various factors to Zn absorption in their model. Joy 
et al.12 estimated the Zn deficiency risk for Africa in 2009 to be 40% as compared to our estimate of 26%. 
This discrepancy, as for Ca, is due to the different food composition data used.

Dietary sources of Zn varied across regions. Animal products were the major sources of Zn (> 40%) 
in North Africa; North and South America; North, South and West Europe; and Australia and New 
Zealand. In other regions, the major source of Zn was cereals (see Supplementary Fig. S1 online). The 
prevalence of deficiency risk and utilization of Zn is influenced by the quantity of Zn intake, and the 
overall dietary composition that either promotes or antagonises Zn bioavailability7,32,33. Among the 
anti-nutrient factors that reduce the absorption of Zn is the phytate (myoinositol hexakisphosphate). 
Phytate chelates with mono and divalent cations such as Zn. Due to the absence of intestinal digestive 
phytases, humans cannot digest phytate and hence chelated Zn cannot be utilized34,35. In 2011, dietary 
phytate supply ranged from 997 in Ecuador to 4179 mg capita−1 d−1 in Niger and 25-80% of the Zn 
supply in all regions originated from cereals which have high phytate content (see Supplementary Fig. 
S1, and Supplementary Table S6 online). Phytate:Zn (PA:Zn) ratios ranged between 5 and 27 (Fig.  5). 
Phytate:Zn ratio for most countries in this study were > 15, the critical threshold level beyond which Zn 
absorption is considered to be inhibited35–38. This will compound the Zn deficiency risk of the popula-
tion due to lower bioavailability13,33. Populations relying on plant-sourced foods with low Ca and Zn are 
also vulnerable to toxic metals that have similar properties to Ca and Zn, for example cadmium (Cd)39. 
Deficiencies in Ca and Zn may lead to organ accumulation and retention of dietary Cd40.

Per capita income, Ca and Zn supplies, and deficiency risks. Calcium and Zn supplies were 
highly positively correlated with per capita Gross National Income based on purchasing power parity 
(GNI-PPP), across all countries and years (Table 1). Countries with lower GNI-PPP had higher Ca and 
Zn deficiency risks than those with high per capita GNI-PPP (see Supplementary Table S10 online), 

Figure 2. Regional temporal trends in population-weighted mean Ca supply (mg capita−1 d−1) and 
deficiency risk (%) between 1992 and 2011. The horizontal broken lines represent the average WtdEAR for 
Ca. Line graphs were drawn using Tableau Software for Desktop version 8.2.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10974 | DOi: 10.1038/srep10974

with strong positive correlations observed between GNI-PPP and Ca and Zn supplies (Table 1). These 
relationships imply that those living in countries with higher GNI-PPP purchase or produce more ani-
mal products, fruits, legumes and vegetables than those with lower GNI-PPP, which is consistent with 
observations from household surveys14. The green revolution of the 1960s was supported by high rates 
of investment in research on staple foods (mainly wheat, rice and maize)41,42. Lower-yielding cereal and 
legume landraces that were potentially better sources of essential micronutrients (e.g., Fe, Zn, Ca, and 
potassium) have generally been replaced with higher yielding cereal varieties43,44. This general decline in 
agro-biodiversity might therefore have compounded MNDs42.

Calcium and Zn deficiency risks and Millennium Development Goal 1. At a global scale, if 
the Millennium Development Goal 1 (MDG1)5 target to halve hunger by 2015 is framed in terms of 

Figure 3. Zn supply (mg capita−1 d−1) and deficiency risk (%). Zinc supply in 1992 (a) and 2011 (c). Zinc 
deficiency risk in 1992 (b) and 2011 (d). Country boundaries were downloaded from the GADM Global 
Administrative Areas database (http://gadm.org/, Version 2, January 2012). Thematic mapping of Zn supply 
and deficiency risk was carried out in ArcGIS 10.2.1.

Ca 
supply

Zn 
supply

Phytate: 
Zn GNI-PPP

Zn supply 0.817**

Phytate:Zn − 0.775** − 0.714**

GNI-PPP 0.755** 0.604** − 0.682**

Energy supply 0.832** 0.770** − 0.641** 0.825**

Table 1.  Relationship between Ca, Zn and energy supply, phytate:Zn molar ratio, and GNI-PPP. Based 
on 2655 data points from 1992-2011 (see Supplementary Table S10 online). **Spearman’s Rank Correlation is 
significant at P ≤  0.01. GNI-PPP is gross national income converted to international dollars using purchasing 
power parity rates. An international dollar has the same purchasing power as a US Dollar in the US.

http://gadm.org/
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Ca deficiency risks, the 76% risk observed in 1992 should have decreased to 46% in 2011. However, 
the Ca deficiency risk was 51% in 2011. For Zn, the 22% risk in 1992 should have decreased to 13% 
in 2011 but was 16%. National level reductions in Ca and Zn deficiency risks were uneven. By 2011, 
101 and 86 countries were not on target to halve Ca and Zn deficiency risks, respectively, by 2015 (see 
Supplementary Table S11 online). Out of these; 34, 19, 26, 20, and 2 countries fell short of halving Ca 
deficiency risks and 22, 14, 22, 26, and 2 countries fell short of halving Zn deficiency risks, from Africa, 
Americas, Asia, Europe and Oceania respectively.

Conclusion and limitations
In 2011, 3.5 and 1.1 billion people were at risk of Ca and Zn deficiency respectively. To our knowledge, 
these are the first global estimates of dietary Ca deficiency risks based on food supply. Our estimates 
of Zn deficiency risks are consistent with recent studies7,32. Supplies and deficiency risks of Ca and Zn 
differed geographically with countries in Asia and Africa accounting for > 90% of the estimated Ca and 
Zn deficiency risks. At higher spatial resolution, differences in Ca and Zn supplies and deficiency risks 
between individual countries become pronounced.

This study uses data from several sources, each of which has its limitations. For example, food sup-
ply data are aggregated at national level with a fixed coefficient of variation in intake. Such data do not 
capture community and household level socio-economic factors which systematically affect intake, nor 
food wastage at a household level, nor seasonal variation in the type and quantity of food supply. All of 
these factors will, of course, affect deficiency risks for Ca and Zn. In addition, the rise in awareness of the 
roles that mineral micronutrients play in human health has led to increased research and development 
to biofortify food crops with micronutrients45–53. This may lead to change in the food composition in 
addition to future increases in food supply due to improvement in crop yields. However, the impact of 
changes in food composition on the reduction of deficiency risk of Ca and Zn due to fortification either 
through agronomic interventions or breeding could not be captured by this study mainly due to a lack 
of temporal, spatial, and varietal food composition data. Similarly, the effect of Ca fortification in cereals 
and milk is not addressed in this study due to lack of data. Therefore, whilst the information presented 
here can inform policy in a general sense, such analyses would become more useful at higher geospatial 
resolution (for example, at subnational levels). Further research could include assessing the health, and 
nutritional status of various age/gender/socioeconomic groups through biochemical, clinical and anthro-
pometric measurements in countries with high deficiency risks of Ca and Zn21. Development of localized 
food composition tables and updating existing ones with information on new/under-utilised food crop 
varieties is crucial to improve the accuracy of estimating deficiency risks of Ca and Zn.

Figure 4. Regional temporal trends in population-weighted mean Zn supply (mg capita−1 d−1) and 
deficiency risk (%) between 1992 and 2011. The horizontal broken lines represent the average WtdEAR for 
Zn. Line graphs were drawn using Tableau Software for Desktop version 8.2.
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Possible solutions to Ca and Zn deficiency include: supplementation, direct fortification9,50, fertiliser 
application51–53 and plant breeding46. Supplementation is crucial in situations that require short term 
actions with high impact, for example, for pregnant women. However, supplementation and direct for-
tification of foodstuffs with Ca and Zn may not be economically feasible and cannot reach the majority 
of the population in developing countries who produce their own food42. Under such circumstances, 
agronomic intervention by applying Zn fertiliser either through foliar routes or to the soil can help 
increase the composition of Zn in food crops53. Similarly, breeding interventions through developing 
food crop varieties with the ability to absorb and accumulate more Zn and Ca from the soil and trans-
locate them to the edible parts, or with lower phytate composition54, can potentially be pursued to 
increase the bioavailability of these nutrients. In addition, the production and provision of affordable 
animal products, and education on how to reduce the impact of phytate in plant source foods on Zn 
bioavailability (for example, soaking, germination, and fermentation) are essential22. We conclude that 
continuing to reduce Ca and Zn deficiency risks through dietary diversification42 and food and agricul-
tural interventions including fortification9, crop breeding46 and use of micronutrient fertilisers49,53 will 
remain a significant challenge in the post-Millennium Development Goals (MDGs) era.

Figure 5. Phytate:Zn (PA:Zn) molar ratio in 1992 (a) and 2011 (b), based on per capita PA and Zn 
supplies. Country boundaries were downloaded from the GADM Global Administrative Areas database 
(http://gadm.org/, Version 2, January 2012). Thematic mapping of PA:Zn ratio was carried out in ArcGIS 
10.2.1.

http://gadm.org/
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Materials and Methods
Food supply, food composition, Estimated Average Requirements (EARs) for Ca and Zn, and demo-
graphic data were compiled to assess global dietary Ca and Zn supplies and deficiency risks between 
1992 and 2011. A total of 145 countries with population > 1 million were included in this study. The 
EAR “cut-point” (EAR-CP) method was used to assess the prevalence of Ca and Zn deficiency risks.

Data sources. The four major datasets required for this research were food supply, food composition, 
EARs for Ca and Zn, and demographic data for each country. Food supply data from 1992 to 2011 were 
obtained from FAOSTAT17. Food composition data for Ca and Zn were obtained from the United States 
Department of Agriculture National Nutrient Database for Standard Reference 26 (USDA SR26) which 
was released in 201319, and the phytate composition of foods were obtained from the Tanzanian food 
composition table (TFC)20. The EAR for Ca and Zn were obtained from the FAO/WHO Human Vitamin 
and Mineral Requirements21. Demographic data were obtained from the United Nations, Department of 
Economic and Social Affairs Population Division, Population Estimates and Projection web page23. These 
data were compiled and integrated in to MS Access relational database management system to assess 
global dietary Ca and Zn supplies and deficiency risks.

Calcium and zinc supply. The 94 food items from FAOSTAT17 food supply data, reported in g cap-
ita−1 d−1, were matched55 with the food commodities in the nutrient composition data in the USDA 
SR26 food composition database (see Supplementary Table S2 online). Nutrient composition data were 
assumed to not change between 1992 and 2011. Per capita Ca and Zn supply was estimated by multi-
plying the edible portion of each food item (derived from energy values provided by the FAO in kcal 
capita−1 d−1)7,18. Calcium and Zn supply from each food commodity was summed to obtain the per 
capita nutrient supply (PCNS) per day for every reference year and country.

Calcium and zinc intakes and requirements. Calcium and Zn intakes were estimated to be the per 
capita Ca and Zn supply with a coefficient of variation of 25%7,32,56. The EAR was estimated and available 
for a given age and gender groups21. As supply data were available for the whole population at national 
level, the EAR was converted to single WtdEAR (Equation 1) based on the population size in each age 
and gender group for each country and year23. The EAR for a given age/gender group was assumed to 
remain unchanged while the WtdEAR varied with the population composition and size. The WtdEAR for 
Ca and Zn is a per capita intake level that fulfils the Ca and Zn needs of half of the apparently healthy 
individuals of the population in a given country in a specific year.

Estimated average requirement “cut-point” (EAR-CP). Historical Ca and Zn deficiency risks 
were assessed using the EAR-CP as described and used by Carriquiry57, Joy et al.55 and Wuehler et al.8. 
The EAR-CP method provides an estimate of the number of people in a given country and year with 
intakes of Ca and Zn below the WtdEAR, which is termed as the deficiency risk in this paper. The 
EAR-CP method has been applied with the following underlying assumptions: little correlation between 
requirement and intake, the distribution of requirement is symmetrical around the EAR, and variability 
in intake is greater than the variability in requirement22,57,58.

Calculation of molar ratio of phytate:Zn. The dietary PA composition of the food items was 
obtained from the TFC20 and the PA supply for each country across the years was estimated by applying 
similar methods as for Ca and Zn supplies. Thence, the daily molar ratio of PA:Zn was calculated by 
dividing the molar intake of PA (molecular weight =  660 g mol−1) by the molar intake of Zn (molecular 
weight =  65.4 g mol−1).

Data analyses and visualisation. Descriptive statistics calculations were conducted in MS Excel. 
Visualisations were carried out in Tableau Software for desktop version 8.2, and ArcGIS 10.2.1. 
Correlation analyses was carried out using IBM SPSS Statistics version 21. The EAR, and aggregations 
of results (mean and standard deviations) at global, regional, and continental levels were weighted by the 
population sizes of the member countries (Equation 1) and (Equation 2).

Equation (1): Derivation of the weighted estimated average requirement (WtdEAR) for Ca and Zn.

=
∑( × )

,

,       ,
          / ,
       /  ,

           

WtdEAR
EARgroup GroupPop

TotalPop
WtdEAR

EARgroup
GroupPop
TotalPop

Where is the weighted EAR for Ca or Zn
is the EAR for either Ca or Zn of a given age gender group
is the population size of a given age gender group and

is the total population in a given year for a given country
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Equation (2): Aggregation of mean (a) and standard deviation (b) of supply, WtdEAR, and deficiency 
risk of Ca at regional level as an example.

a) Derivation of the mean of aggregated information at regional level.

( )

∑
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∑

∑
,

=
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∑
,
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∑( )

∑
,
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CaSup j
PCountr y j
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WtdCaWtdMeanEAR
CaWtdEAR PCountr y

Population
WtdMeanCaWtdMeanEAR i

CaWtdEAR j

WtdCaMeanDefRisk
CaDefRisk PCountr y

Population
WtdCaMeanDefRisk i

CaDefRisk j

Where is the weighted mean Ca supply in region ;
is Ca supply in country ;

is the population in country

is the total population in region

Where is the weighted mean Ca WtdEAR in region ;
is the Ca WtdEAR in country

Where is the weighted mean Ca deficiency risk in region ;
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