208 research outputs found

    Mapping mean total annual precipitation in Belgium, by investigating the scale of topographic control at the regional scale

    Get PDF
    Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological models that have a spatial output component. It is well known that topography has a major influence on the spatial distribution of precipitation and that increasing topographical complexity is associated with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a climate measuring network with higher spatial density is needed in mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual precipitation mapping technique that combines topographical information (i.e. elevation and slope orientation) with average total annual rain gauge data in order to overcome this problem. A unique feature of this paper is the identification of the scale at which topography influences the precipitation pattern as well as the direction of the dominant weather circulation. This method was applied for Belgium and surroundings and shows that the identification of the appropriate scale at which topographical obstacles impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual precipitation patterns in regions characterized by rather high topographical complexity using a climate data network with a relatively low density and/or when more advanced precipitation measurement techniques, such as radar, aren't available, for example in the case of historical data

    Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    Full text link
    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30000 K which would place them in the so called DB-gap. Finding these DB white dwarfs in binaries may suggest that they have formed through a different evolutionary channel than the ones in which DA white dwarfs transform into DB white dwarfs due to convection in the upper layers.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter

    Assessing the performance of UAS-compatible multispectral and hyperspectral sensors for soil organic carbon prediction

    Get PDF
    Soil laboratory spectroscopy has proved its reliability for the estimation of soil organic carbon (SOC) by exploiting the relationship between electromagnetic radiation and key spectral features of organic matter located in the VIS-NIR-SWIR (350-2500 nm) region. It currently allows estimating soil variables at sampled points, however geo-statistical techniques have to be used to infer continuous spatial information on soil properties. In this regard, the use of proximal or remote sensing data could be very useful to provide detailed spectral sampling on soil spatial variability at the field or even regional scale. However, the factors affecting the quality of spectral acquisition in outdoor conditions need to be taken into account. In this perspective, we designed a study to investigate the capabilities of two portable hyperspectral sensors (STS-VIS and STS-NIR), and two multispectral cameras with narrow bands in the VIS-NIR region (Parrot Sequoia and Mini-MCA6), against a more sensitive reference hyper-spectral sensor (ASD Fieldspec-Pro 3) to provide data for SOC modelling from ground-based measurements. The aim of the comparison was to assess the performance of Partial Least Squares Regression (PLSR) models, when moving from laboratory to outdoor conditions, namely changing illumination, air conditions and sensor distance. Moreover, to verify the transferability of the prediction models between different measurement setups, we tested a methodology to align spectra acquired under different conditions (laboratory and outdoor) or by different instruments, by means of a calibration factor based on an internal soil standard. The results, in terms of Ratio of Performance to Deviation (RPD), showed that: i) the best performance for SOC modelling under outdoor conditions were obtained using the VIS-NIR range (RPD: 4.2), while the addition of the SWIR region resulted in a worsening of the prediction accuracy (RPD: 2.9); ii) modelling on the narrow bands of the two multispectral cameras (Parrot Sequoia and Tetracam Mini-MCA6) gave better performances (RPD: 4.2 and 3.4 respectively) than with the STS hyperspectral sensors (RPD: 2.6); iii) the STS employment in the outdoor benefitted from a laboratory model calibration adopting a spectral transfer using an internal soil standard, with the RPD increasing from 1.4 to 2.9 after the alignment. We therefore suggest that the employment of VIS-NIR-based portable instrument could be a strategy to obtain accurate and spatially distributed SOC data. Moreover, the perspective of their employment on UAS could represent a cost-effective solution for precision farming applications

    Rocky Planetesimals as the Origin of Metals in DZ Stars

    Full text link
    {Abridged}. An analysis of the calcium and hydrogen abundances, Galactic positions and kinematics of 146 DZ stars from the Sloan Digital Sky Survey demonstrates that interaction with the interstellar medium cannot account for their externally polluted atmospheres. The calcium-to-hydrogen ratios for the 37 DZA stars are dominated by super-solar values, as are the lower limits for the remaining 109 DZ stars. All together their metal-contaminated convective envelopes contain 10^{20+-2} g of calcium, commensurate with the masses of calcium inferred for large asteroids. It is probable that these stars are contaminated by circumstellar matter; the rocky remains of terrestrial planetary systems. In this picture, two predictions emerge: 1) at least 3.5% of all main sequence A- and F-type stars build terrestrial planets; and 2) the DZA stars are externally polluted by both metals and hydrogen, and hence constrain the frequency and mass of water-rich, extrasolar planetesimals.Comment: Accepted to MNRA

    Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics

    Get PDF
    Open Access Journal; Published online: 22 Jan 2018The fate of doubled genes, from allopolyploid or autopolyploid origin, is controlled at multiple levels, resulting in the modern day cultivars. We studied the root growth of 3 different triploid banana cultivars under control and osmotic stress conditions. The root growth of the allopolyploid ABB cultivar was 42% higher under control and 61% higher under osmotic stress. By integrating transcriptomics and proteomics, we studied the gene expression of all 3 cultivars, resulting in 2,749 identified root proteins. 383 gene loci displayed genotype specific differential expression whereof 252 showed at least one Single Amino Acid Polymorphism (SAAP). In the ABB cultivar, allele expressions supposedly follow a 1/3 and 2/3 pattern for respectively the A and the B allele. Using transcriptome read alignment to assess the homeoallelic contribution we found that 63% of the allele specific genes deviated from this expectation. 32 gene loci even did not express the A allele. The identified ABB allele- specific proteins correlate well with the observed growth phenotype as they are enriched in energy related functions such as ATP metabolic processes, nicotinamide nucleotide metabolic processes, and glycolysis
    corecore