44 research outputs found

    Discrete reduction patterns of parvalbumin and calbindin D-28k immunoreactivity in the dorsal lateral geniculate nucleus and the striate cortex of adult macaque monkeys after monocular enucleation

    Get PDF
    We analyzed the immunohistochemical distribution of the two calcium-binding proteins, parvalbumin (PV) and calbindin D-28k (CB), in the primary visual cortex and lateral dorsal geniculate nucleus (dLGN) of monocularly enucleated macaque monkeys (Macaca fascicularis and Macaca nemestrind) in order to determine how the expression of PV and CB is affected by functional inactivity. The monkeys survived 1-17 weeks after monocular enucleation. The distribution pattern of each of the proteins was examined immunocytochemically using monoclonal antibodies and compared with that of the metabolic marker cytochrome oxidase (CO). We recorded manually the number of immunostained neurons and estimated the concentration of immunoreactive staining product using a computerized image-acquisition system. Our results indicate a decrease of approximately 30% in the labeling of PV-immunoreactive (ir) neuropil particularly in those layers of denervated ocular-dominance columns receiving the geniculocortical input. There was no change in the number of PV-ir neurons in any compartment irrespective of the enucleation interval. For CB-ir, we found a 20% decrease in the neuropil labeling in layer 2/3 of the denervated ocular-dominance columns. In addition, a subset of pyramidal CB-ir neurons in layers 2 and 4B, which are weakly stained in control animals, showed decreased labeling. In the dLGN of enucleated animals, PV-ir and CB-ir were decreased only in the neuropil of the denervated layers. From these results, we conclude that cortical interneurons and geniculate projection neurons still express PV and CB in their cell bodies after disruption of the direct functional input from one eye. The only distinct decrease of PV and CB expression is seen in axon terminals from retinal ganglion cells in the dLGN, and in the axons and terminals of both geniculocortical projection cells and cortical interneurons in the cerebral corte

    Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells

    Get PDF
    The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.ACKNOWLEDGMENTS: The authors wish to thank Raquel García-Ceballos and Saray Pereda for technical assistance. This work was supported by the following grants: Dirección General de Investigación (BFU2008- 00175); Instituto de Salud Carlos III (CIBERNED, CB06/05/ 0037), Ministerio de Ciencia y Tecnología (BFU2010-18284), Ministerio de Sanidad, Política Social e Igualdad (Plan Nacional Sobre Drogas), Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV, FMV/UC09-02), Junta de Castilla y León, Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Fundación Memoria D. Samuel Solórzano-Barruso, all of them from Spain

    Nucleolin reorganization and nucleolar stress in Purkinje cells of mutant PCD mice

    Get PDF
    The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.Acknowledgements: The authors declare no conflict of interest. The authors wish to thank Raquel García-Ceballos for technical assistance. This work was supported by the following grants: “Instituto de Salud Carlos III” (CIBERNED, CB06/05/0037) and CIBERONC (CB16/12/00352), “Instituto de Investigación Valdecilla” (IDIVAL, Santander, Spain), FIS PI16/02137 from ISCIII and SAF2016-79668-R (MINECO, Spain), SA043U16 (UIC076) and SA030P17 (UIC217) from JCyL (Spain)

    Immunohistochemical distribution of secretagogin in the mouse brain

    Get PDF
    Introduction: Calcium is essential for the correct functioning of the central nervous system, and calcium-binding proteins help to finely regulate its concentration. Whereas some calcium-binding proteins such as calmodulin are ubiquitous and are present in many cell types, others such as calbindin, calretinin, and parvalbumin are expressed in specific neuronal populations. Secretagogin belongs to this latter group and its distribution throughout the brain is only partially known. In the present work, the distribution of secretagogin-immunopositive cells was studied in the entire brain of healthy adult mice. Methods: Adult male C57BL/DBA mice aged between 5 and 7 months were used. Their whole brain was sectioned and used for immunohistochemistry. Specific neural populations were observed in different zones and nuclei identified according to Paxinos mouse brain atlas. Results: Labelled cells were found with a Golgi-like staining, allowing an excellent characterization of their dendritic and axonal arborizations. Many secretagogin-positive cells were observed along different encephalic regions, especially in the olfactory bulb, basal ganglia, and hypothalamus. Immunostained populations were very heterogenous in both size and distribution, as some nuclei presented labelling in their entire extension, but in others, only scattered cells were present. Discussion: Secretagogin can provide a more complete vision of calcium-buffering mechanisms in the brain, and can be a useful neuronal marker in different brain areas for specific populations.This work was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) (SAF2016-79668- R to EW), the Ministry of Science and Innovation (PID2019- 106943RB-I00 to EW), the Ministry of Universities (MIU) (FPU20/03457 to PT), the Regional Government of Castile and Leon (SA178U13 to EW; EDU/556/2019 to LP-R), the Centre for Regenerative Medicine and Cell Therapy of Castile and Leon (EW), and the University of Salamanca (EW)

    Sacar las clases prácticas del laboratorio a la calle: Foldscope. Uso de microscopios plegables como herramienta docente

    Get PDF
    Memoria ID-112. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2019-2020.[ES]El objetivo general es introducir un innovadora herramienta docente de imagen que supere la dificultad de contar con la herramienta básica, el microscopio, en las asignaturas que estudian las células y tejidos. Incluye que los alumnos se conviertan en el sujeto central del proceso educativo y exploren la organización de animales, plantas, hongos y organismos unicelulares en su entorno (comida, naturaleza, aguas contaminadas, etc.

    Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb

    Get PDF
    New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.This research was supported by grants from the Spanish Ministerio de Economía, Innovación y Competitividad MINECO (SAF2009-07842, ADE10-0010, RD07-0060-2007, RD12-0032-12 and SAF2012-40023 to FdC; and BFU2010-18284 to JMG-V), FISCAM (Gobierno de Castilla-La Mancha, Spain—Grant Number PI2007-66), the Junta de Castilla y León (Spain, to EW), and from the Fundación Eugenio Rodríguez Pascual (Spain) to FdC. DGG and VMB were PhD students hired by Gobierno de Castilla-La Mancha (MOV2010-JI/11 and MOV2007-JI/19, respectively). FdCS is a CSIC staff scientist in special permission hired by SESCAM (Gobierno de Castilla-La Mancha, Spain). PFE was a researcher hired by SESCAM (Gobierno de Castilla-La Mancha) and ADE10-0010.Peer reviewe

    Lobe X of the Cerebellum: A Natural Neuro-Resistant Region

    No full text
    The cerebellum is an encephalic region classically known for its central role in the control of movement, although recent research has revealed its involvement in other cognitive and affective tasks. Several different pathologies are known to affect this structure, causing a wide range of behavioral and gait impairments. Intriguingly, although the neurodegenerative factors affect all Purkinje cells of the cerebellum uniformly, certain neurodegeneration patterns can be distinguished, in which some Purkinje cells persist longer than other cell types. Specifically, there is a cerebellar region, lobe X, which is more resistant to different types of neurodegeneration, regardless of the injury. Degeneration patterns of the cerebellum have been described in several models, but this review goes further, as it aims at describing a phenomenon not so described: the resistance of the lobe X to neurodegeneration. For this purpose, the main models of cerebellar degeneration will be reviewed and a common origin for the lobe X resistance will be sought
    corecore