378 research outputs found

    Visual assessment of heart rate variability patterns associated with neonatal infection in preterm infants

    Get PDF
    Early identification of neonatal sepsis may help reduce morbidity. From Heart Rate Variability (HRV) visually assessed in preterm infants, eight of nine recordings in babies with positive blood cultures had low HRV and six infants without positive cultures had normal HRV. Straightforward HRV display could help identify infection in infants

    Infant home respiratory monitoring using pulse oximetry

    Get PDF
    Respiratory rate (RR) is a valuable early marker of illness in vulnerable infants, but current monitoring methods are unsuitable for sustained home use. We have demonstrated accurate measurement of RR from brief recordings of pulse oximeter plethysmogram (pleth) trace in full-term neonates in hospital. This study assessed the feasibility of this method in preterm infants during overnight recordings in the home. We collected simultaneous overnight SpO2, pleth and respiratory inductive plethysmography (RIP) on 24 preterm infants in the home. RR from pleth analysis was compared with RR from RIP bands; pleth quality was assessed by the presence of visible artefact. Median (range) RR from RIP and pleth were not significantly different at 42 (25-65) and 42 (25-64) breaths/min. Median (range) % of epochs rejected due to artefact was 20 (8-75) for pleth and 10 (3-53) for RIP. Our results suggest that home RR monitoring by pulse oximeter pleth signal is accurate and feasible

    Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair

    Get PDF
    The prospects for successful peripheral nerve repair using fibre guides are considered to be enhanced by the use of a scaffold material, which promotes attachment and proliferation of glial cells and axonal regeneration. Macroporous alginate fibres were produced by extraction of gelatin particle porogens from wet spun fibres produced using a suspension of gelatin particles in 1.5% w/v alginate solution. Gelatin loading of the starting suspension of 40.0, 57.0, and 62.5% w/w resulted in gelatin loading of the dried alginate fibres of 16, 21, and 24% w/w respectively. Between 45 and 60% of the gelatin content of hydrated fibres was released in 1 h in distilled water at 37 °C, leading to rapid formation of a macroporous structure. Confocal laser scanning microscopy (CLSM) and image processing provided qualitative and quantitative analysis of mean equivalent macropore diameter (48–69 μm), pore size distribution, estimates of maximum porosity (14.6%) and pore connectivity. CLSM also revealed that gelatin residues lined the macropore cavities and infiltrated into the body of the alginate scaffolds, thus, providing cell adhesion molecules, which are potentially advantageous for promoting growth of glial cells and axonal extension. Macroporous alginate fibres encapsulating nerve cells [primary rat dorsal root ganglia (DRGs)] were produced by wet spinning alginate solution containing dispersed gelatin particles and DRGs. Marked outgrowth was evident over a distance of 150 μm at day 11 in cell culture, indicating that pores and channels created within the alginate hydrogel were providing a favourable environment for neurite development. These findings indicate that macroporous alginate fibres encapsulating nerve cells may provide the basis of a useful strategy for nerve repair

    Model of a fluid at small and large length scales and the hydrophobic effect

    Full text link
    We present a statistical field theory to describe large length scale effects induced by solutes in a cold and otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes and corresponding constraints, integration over the Gaussian field yields an effective lattice gas Hamiltonian for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamiltonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit solvent dynamics and structure in simulation studies of large molecular assemblies

    Effects of etching time on alpha tracks in solid state nuclear track detectors

    Get PDF
    Solid State Nuclear Track Detectors (SSNTDs) are used extensively for monitoring alpha particle radiation, neutron flux and cosmic ray radiation. Radon gas inhalation is regarded as being a significant contributory factor to lung cancer deaths in the UK each year. Gas concentrations are often monitored using CR39 based SSNTDs as the natural decay of radon results in alpha particles which form tracks in these detectors. Such tracks are normally etched for about 4 hours to enable microscopic analysis. This study examined the effect of etching time on the appearance of alpha tracks in SSNTDs by collecting 2D and 3D image datasets using laser confocal imaging techniques. Etching times of 2 to 4 hours were compared and marked differences were noted in resultant track area. The median equivalent diameters of tracks were 20.2, 30.2 and 38.9 µm for etching at 2, 3 and 4 hours respectively. Our results indicate that modern microscope imaging can detect and image the smaller size tracks seen for example at 3 hours etching time. Shorter etching times may give rise to fewer coalescing tracks although there is a balance to consider as smaller track sizes may be more difficult to image. Thus etching for periods of less than 4 hours clearly merits further investigation as this approach has the potential to improve accuracy in assessing the number of tracks

    Occurrence and associative value of non-identifiable fingermarks

    Get PDF
    Fingermarks that have insufficient characteristics for identification often have discernible characteristics that could form the basis for lesser degrees of correspondence or probability of occurrence within a population. Currently, those latent prints that experts judge to be insufficient for identification are not used as associative evidence. How often do such prints occur and what is their potential value for association? The answers are important. We could be routinely setting aside a very important source of associative evidence, with high potential impact, in many cases; or such prints might be of very low utility, adding very little, or only very rarely contributing to cases in a meaningful way. The first step is to better understand the occurrence and range of associative value of these fingermarks. The project goal was to explore and test a theory that in large numbers of cases fingermarks of no value for identification purposes occur and are readily available, though not used, and yet have associative value that could provide useful information. Latent fingermarks were collected from nine state and local jurisdictions. Fingermarks included were those (1) collected in the course of investigations using existing jurisdictional procedures, (2) originally assessed by the laboratory as of no value for identification (NVID), (3) re-assessed by expert review as NVID, but with least three clear and reliable minutiae in relationship to one another, and (4) determined to show at least three auto-encoded minutiae. An expected associative value (ESLR) for each mark was measured, without reference to a putative source, based on modeling within-variability and between-variability of AFIS scores. This method incorporated (1) latest generation feature extraction, (2) a (minutiae-only) matcher, (3) a validated distortion model, and (4) NIST SD27 database calibration. Observed associative value distributions were determined for violent crimes, property crimes, and for existing objective measurements of latent print quality. 750 Non Identifiable Fingermarks (NIFMs) showed values of Log10 ESLR ranging from 1.05 to 10.88, with a mean value of 5.56 (s.d. 2.29), corresponding to an ESLR of approximately 380,000. It is clear that there are large numbers of cases where NIFMs occur that have high potential associative value as indicated by the ESLR. These NIFMs are readily available, but not used, yet have associative value that could provide useful information. These findings lead to the follow-on questions, “How useful would NIFM evidence be in actual practice?” and, “What developments or improvements are needed to maximize this contribution?

    Automated electroencephalographic discontinuity in cooled newborns predicts cerebral MRI and neurodevelopmental outcome

    Get PDF
    BACKGROUND AND HYPOTHESIS: Prolonged electroencephalographic (EEG) discontinuity has been associated with poor neurodevelopmental outcomes after perinatal asphyxia but its predictive value in the era of therapeutic hypothermia (TH) is unknown. In infants undergoing TH for hypoxic-ischaemic encephalopathy (HIE) prolonged EEG discontinuity is associated with cerebral tissue injury on MRI and adverse neurodevelopmental outcome. METHOD: Retrospective study of term neonates from three UK centres who received TH for perinatal asphyxia, had continuous two channel amplitude-integrated EEG with EEG for a minimum of 48 h, brain MRI within 6 weeks of birth and neurodevelopmental outcome data at a median age of 24 months. Mean discontinuity was calculated using a novel automated algorithm designed for analysis of the raw EEG signal. RESULTS: Of 49 eligible infants, 17 (35%) had MR images predictive of death or severe neurodisability (unfavourable outcome) and 29 (59%) infants had electrographic seizures. In multivariable logistic regression, mean discontinuity at 24 h and 48 h (both p=0.01), and high seizure burden (p=0.05) were associated with severe cerebral tissue injury on MRI. A mean discontinuity >30 s/min-long epoch, had a specificity and positive predictive value of 100%, sensitivity of 71% and a negative predictive value of 88% for unfavourable neurodevelopmental outcome at a 10 µV threshold. CONCLUSIONS: In addition to seizure burden, excessive EEG discontinuity is associated with increased cerebral tissue injury on MRI and is predictive of abnormal neurodevelopmental outcome in infants treated with TH. The high positive predictive value of EEG discontinuity at 24 h may be valuable in selecting newborns with HIE for adjunctive treatments
    corecore