90 research outputs found

    Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect

    Get PDF
    When a slowly moving pattern is presented on a monitor which itself is moved, the pattern appears to freeze on the screen (Mesland and Wertheim in Vis Res 36(20):3325–3328, 1996) even if we move our head with the monitor, as with a head mounted display (Pavard and Berthoz in Perception 6:529–540, 1977). We present a simple model of these phenomena, which states that the perceived relative velocity between two stimuli (the pattern and the moving monitor) is proportional to the difference between the perceived velocities of these stimuli in space, minus a noise factor. The latter reflects the intrinsic noise in the neural signals that encode retinal image velocities. With noise levels derived from the literature the model fits empirical data well and also predicts strong distortions of visually perceived motion during vestibular stimulation, thus explaining both illusions as resulting from the same mechanism

    Gender comparisons of fat talk in the United Kingdom and the United States

    Get PDF
    This study compared different forms of body talk, including "fat talk," among 231 university men and women in central England (UK; n = 93) and the southeastern United States (US; n = 138). A 2 (gender) by 2 (country) repeated measures ANOVA across types of body talk (negative, self-accepting, positive) and additional Chi-square analyses revealed that there were differences across gender and between the UK and US cultures. Specifically, UK and US women were more likely to report frequently hearing or perceiving pressure to engage in fat talk than men. US women and men were also more likely to report pressure to join in self-accepting body talk than UK women and men

    A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding

    Get PDF
    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality

    Capsaicin Protects Mice from Community-Associated Methicillin-Resistant Staphylococcus aureus Pneumonia

    Get PDF
    BACKGROUND: α-toxin is one of the major virulence factors secreted by most Staphylococcus aureus strains, which played a central role in the pathogenesis of S. aureus pneumonia. The aim of this study was to investigate the impact of capsaicin on the production of α-toxin by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain USA 300 and to further assess its performance in the treatment of CA-MRSA pneumonia in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: The in vitro effects of capsaicin on α-toxin production by S. aureus USA 300 were determined using hemolysis, western blot, and real-time RT-PCR assays. The influence of capsaicin on the α-toxin-mediated injury of human alveolar epithelial cells was determined using viability and cytotoxicity assays. Mice were infected intranasally with S. aureus USA300; the in vivo protective effects of capsaicin against S. aureus pneumonia were assessed by monitoring the mortality, histopathological changes and cytokine levels. Low concentrations of capsaicin substantially decreased the production of α-toxin by S. aureus USA 300 without affecting the bacterial viability. The addition of capsaicin prevented α-toxin-mediated human alveolar cell (A549) injury in co-culture with S. aureus. Furthermore, the in vivo experiments indicated that capsaicin protected mice from CA-MRSA pneumonia caused by strain USA 300. CONCLUSIONS/SIGNIFICANCE: Capsaicin inhibits the production of α-toxin by CA-MRSA strain USA 300 in vitro and protects mice from CA-MRSA pneumonia in vivo. However, the results need further confirmation with other CA-MRSA lineages. This study supports the views of anti-virulence as a new antibacterial approach for chemotherapy

    Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact?

    Get PDF
    The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined

    The reference frame for encoding and retention of motion depends on stimulus set size

    Get PDF
    YesThe goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information

    Genome Sequence of a Lancefield Group C Streptococcus zooepidemicus Strain Causing Epidemic Nephritis: New Information about an Old Disease

    Get PDF
    Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN), a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis
    corecore