346 research outputs found

    Targeting the Oxytocin System: New Pharmacotherapeutic Approaches

    Full text link
    Deficits in social behavioral domains, such as interpersonal communication, emotion recognition, and empathy, are a characteristic symptom in several neuropsychiatric disorders, including schizophrenia and autism spectrum disorder (ASD). The neuropeptide oxytocin (OT) has emerged as a key regulator of diverse social behaviors in vertebrates and, thus, has been identified as a potential therapeutic target for improving social dysfunction. In recent years, the field of OT research has seen an explosion of scientific inquiry, producing a more comprehensive picture of oxytocinergic signaling and the pathways that regulate its release and degradation in the brain. In this review, we provide an analysis of how this information is being exploited to accelerate the discovery of novel oxytocinergic therapeutics

    Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the Coral Sea

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e83249, doi:10.1371/journal.pone.0083249.Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark–human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.Funding was provided by the the Agence Francaise de Développement (http://www.afd.fr), French Pacific Fund, the CRISP program (www.crisponline.info) and QLD Fisheries

    Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    Get PDF
    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations.We compare our results with existingworks that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe

    Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 receptor antagonist

    Get PDF
    Adamantanyl benzamide 1 was identified as a potent P2X7R antagonist but failed to progress further due to poor metabolic stability. We describe the synthesis and SAR of a series of bioisosteres of benzamide 1 to explore improvements in the pharmacological properties of this lead. Initial efforts investigated a series of heteroaromatic bioisosteres, which demonstrated improved physicochemical properties but reduced P2X7R antagonism. Installation of bioisosteric fluorine on the adamantane bridgeheads was well tolerated and led to a series of bioisosteres with improved physicochemical properties and metabolic stability. Trifluorinated benzamide 34 demonstrated optimal physicochemical parameters, superior metabolic stability (ten times longer than lead benzamide 1), and an improved physicokinetic profile and proved effective in the presence of several known P2X7R polymorphisms

    A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction

    Get PDF
    Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Gαi-coupled C5a receptor and the Gαq-coupled UDP receptor signaling systems that results in synergistic calcium release

    Signaling pathways downstream of P2 receptors in human neutrophils

    Get PDF
    Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y2 receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y2 receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only ∼75% loss of nucleotide-induced Ca2+ mobilization indicating that nucleotides cause Ca2+ mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca2+ mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca2+ increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca2+ mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca2+ increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca2+ chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y2 receptor can cause Ca2+ mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins
    corecore