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Using our recent results on eigenvalues of invariants associated to the Lie superalgebra
gl(m|n), we use characteristic identities to derive explicit matrix element formulae for
all gl(m|n) generators, particularly non-elementary generators, on finite dimensional
type 1 unitary irreducible representations. We compare our results with existing works
that deal with only subsets of the class of type 1 unitary representations, all of which
only present explicit matrix elements for elementary generators. Our work therefore
provides an important extension to existing methods, and thus highlights the strength
of our techniques which exploit the characteristic identities. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4861706]

I. INTRODUCTION

This is the second paper in a series aimed at deriving matrix elements of elementary and
non-elementary generators of finite dimensional unitary irreducible representations for the Lie
superalgebra gl(m|n). Such representations were classified in the work of Gould and Zhang,1, 2

although the concept of a conjugation operation (necessary to understand unitary representations)
was well known before this thanks to the work of Scheunert, Nahm, and Rittenberg.3 There are two
types of finite dimensional irreducible unitary representations of gl(m|n) that are defined depending
on the sesquilinear form that exists on the module (see Sec. III below for more details). In this paper,
we consider only the irreducible type 1 unitary representations, and make use of the classification
results of Refs. 1 and 2. The matrix elements of the irreducible unitary representations of type 2 will
be dealt with in a subsequent article.

The first of our papers in the series4 was aimed at constructing invariants associated with
gl(m|n), and determining analytic expressions for their eigenvalues, which paves the way for the
current article. Indeed, as we shall see, we rely heavily on some of the results obtained in Ref. 4.
Another important motivation for the first article was to highlight the innovative techniques involving
characteristic identities.5–9 We are certainly of the opinion that these characteristic identities are a
valuable yet underestimated (perhaps even unknown) mathematical tool, and over the course of
this series of papers we aim to convince readers of their usefulness and importance. Characteristic
identities associated to Lie superalgebras have been studied in the work of Green and Jarvis10, 11 and
Gould.12

Our previous paper4 gives a reasonably detailed survey of the current literature on the subject, not
only concerning invariants, but also regarding the matrix element formulae themselves. We therefore
direct the reader to that article for the broad setting of the current work. The types of matrix element
formulae that we will present here were first written down by Gelfand and Tsetlin13, 14 for the
general linear and orthogonal Lie algebras, and many works followed. Our approach is of a similar
nature to the work of Baird and Biedenharn,15 in the sense that we are interested in advocating the
methods used, as well as the matrix element formulae themselves, which are derived for all (i.e.,
both elementary and non-elementary) generators. We find that the results presented in this paper,
particularly in Secs. VIVII, are of such generality that they encompass the results of previous works
of Palev,16, 17 Stoilova and Van der Jeugt,18 and Molev19 (also Tolstoy et al.20) for the case of the
elementary generators. Hence our methods appear to unite other approaches, and certainly contexts.

0022-2488/2014/55(1)/011703/32/$30.00 C©2014 AIP Publishing LLC55, 011703-1
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More significantly, however, the current article extends these works to derive explicit expressions
for the matrix elements of the non-elementary generators. This is important not only for analytic
completeness, but for computational efficiency. For instance, the computational time required to
compute matrix elements of non-elementary generators via (anti-)commutators grows exponentially
with the dimensions of the representation and the Lie superalgebra. Thus in any concrete application
having explicit matrix element formulae of the non-elementary generators is essential for maximising
algorithmic efficiency. This has indeed been demonstrated for prototype applications of normal Lie
algebras in the context of the nuclear shell model21 and quantum chemistry.22–26

We also give explicit statements of branching rules for the case of all type 1 unitary representa-
tions corresponding to a basis symmetry adapted to the chain of subalgebras

gl(m|n + 1) ⊃ gl(m|n) ⊃ · · · ⊃ gl(m|1) ⊃ gl(m) ⊃ gl(m − 1) ⊃ · · · ⊃ gl(1).

Having such explicit rules for the decomposition of an irreducible type 1 unitary gl(m|n + 1) highest
weight module into a direct sum of irreducible type 1 unitary gl(m|n) highest weight modules lends
itself to representing the basis vectors using the familiar combinatorial Gelfand-Tsetlin (GT) patterns
generalised to the case of Lie superalgebras. Such patterns have already appeared throughout the
literature for a variety of Lie superalgebras, particularly for gl(m|n) in the articles.16–20 The branching
rules presented in the current article simplify the conditions satisfied by the weight labels in such
GT patterns to encompass all type 1 unitary highest weight modules of gl(m|n).

The paper is organised as follows. Section II provides a brief review of the context and important
notations used throughout the paper. Section III then summarises the classification results of Gould
and Zhang1, 2 pertaining to the unitary representations of gl(m|n) in particular. Specifically for the
type 1 unitary representations, in Sec. IV, we present three main subclasses of representations,
which correspond to certain cases already presented in the literature, and highlight a case which
is genuinely new, although somewhat simplistic. The details of the branching rules are given in
Sec. V, followed by a construction of the explicit matrix element formulae derived using characteristic
identities in Sec. VI. The explicit matrix element formulae are then presented in their entirety in
Sec. VII. To help solidify some of the concepts encountered by the reader, we present an example in
Sec. VIII that deals with an arbitrary irreducible type 1 unitary representation of gl(2|2).

II. REVIEW

In this article, we adopt the same graded index notation used in Ref. 4, with Latin indices
1 ≤ i, j, . . . ≤ m assumed to be even, and Greek indices 1 ≤ μ, ν, . . . ≤ n taken to be odd. The
parity of the index is characterised by

(i) = 0, (μ) = 1.

As in Ref. 4, where convenient we sometimes use indices 1 ≤ p, q, r, s ≤ m + n, in which case if
p = 1, . . . , m then we write (p) = 0, and if p = m + μ for some μ = 1, . . . , n then we write
(p) = (μ) = 1. In particular, the gl(m|n) generators Epq satisfy the graded commutation relations

[E pq , Ers] = δqr E ps − (−1)[(p)+(q)][(r )+(s)]δps Erq .

We let H denote the Cartan subalgebra of gl(m|n) made up of the mutually commuting generators
Epp. Using the same notation as Ref. 4, we may express any weight � ∈ H* in terms of fundamental
weights εi and δμ as introduced by Kac,27 as

� =
m∑

i=1

�iεi +
n∑

μ=1

�μδμ,

where the coefficients �p are the eigenvalues of the generators Epp on a corresponding weight vector.
Let ψ be a homogeneous graded intertwining operator

ψ : V (ε1) ⊗ V → W,
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where V and W are gl(m|n) modules, and V (ε1) is the module corresponding to the fundamental
vector representation with highest weight ε1. Setting {er | 1 ≤ r ≤ m + n} as a homogeneous basis
for V (ε1), the set of components {ψ r}, collectively referred to as a vector operator, has an action on
V given by

ψrv = ψ(er ⊗ v), ∀v ∈ V .

In terms of the graded commutator, the transformation law for vector operators can be expressed4 as

[E pq , ψ
r ] = (−1)(ψ)[(p)+(q)]δr

qψ
p.

Similarly, let φ be the graded intertwining operator

φ : V (ε1)∗ ⊗ V → W,

where V (ε)∗ denotes the dual vector representation. Setting {er | 1 ≤ r ≤ m + n} as a homogeneous
basis for V (ε1)∗, the set of components {φr}define a contragredient vector operator, which transforms
under graded commutation according to

[E pq , φr ] = −(−1)[(φ)+(q)][(p)+(q)]δprφq .

In this article, we are interested in odd vector and contragredient vector operators (with (ψ)
= 1 = (φ)). In this case, if χ r and ψ s are two odd vector operators, and φr and ξ s are two odd
contragredient vector operators, then the following are worth noting:

[E pq , χ
rψ s] = [E pq , χ

r ]ψ s + (−1)[(p)+(q)][1+(r )]χ r [E pq , ψ
s],

[E pq , φrξs] = [E pq , φr ]ξs + (−1)[(p)+(q)][1+(r )]φr [E pq , ξs].

As in Ref. 4, for 1 ≤ p, q ≤ m + n, we define a matrix Ā, associated to the vector representation
πε1 , with entries

Ā q
p = −(−1)(p)(q) Eqp, (1)

which can be shown4 to satisfy the characteristic identity

m∏
i=1

(Ā − ᾱi )
n∏

μ=1

(Ā − ᾱμ) = 0, (2)

when acting on an irreducible gl(m|n) module V (�). The characteristic roots ᾱi , ᾱμ are given in
terms of the highest weight labels �r by

ᾱi = i − 1 − �i , 1 ≤ i ≤ m, (3)

ᾱμ = �μ + m + 1 − μ, 1 ≤ μ ≤ n. (4)

We may also define a matrix A, which is associated to the (triple) dual vector representation
π∗∗∗

ε1
, with entries

Ap
q = (−1)(p) E pq , (5)

which can also be shown to satisfy the characteristic equation

m∏
i=1

(A − αi )
n∏

μ=1

(A − αμ) = 0, (6)

where the characteristic roots αi, αμ are given by

αi = �i + m − n − i, 1 ≤ i ≤ m, (7)

αμ = μ − �μ − n, 1 ≤ μ ≤ n. (8)
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Using Eqs. (2) and (6), respectively, we may construct projection operators

P̄[r ] =
m+n∏
k 	=r

( Ā − ᾱk

ᾱr − ᾱk

)
,

P[r ] =
m+n∏
k 	=r

(A − αk

αr − αk

)
,

and then use these projections to obtain spectral resolutions of the vector and contragredient vector
operators, respectively:

ψ p =
m∑

i=1

ψ[i]p +
n∑

μ=1

ψ[μ]p,

φp =
m∑

i=1

φ[i]p +
n∑

μ=1

φ[μ]p.

In the above, we have used the shift components ψ[r] and φ[r], expressible in terms of the appropriate
projections (summation over repeated indices assumed) as

ψ[r ]p = ψq P̄[r ] p
q = P[r ]p

qψ
q ,

φ[r ]p = P̄[r ] q
p φq = (−1)(p)+(q)φq P[r ]q

p.

The shift components ψ[r] and φ[r] effect the following shifts in the representations labels �:

ψ[r ] : �q → �q + δrq ,

φ[r ] : �q → �q − δrq .

III. CLASSIFICATION OF UNITARY IRREDUCIBLE REPRESENTATIONS OF gl(m|n)

In this section, we summarise the classification results of Gould and Zhang1, 2 pertaining to
finite dimensional irreducible unitary representations of gl(m|n).

On every irreducible, finite dimensional gl(m|n)-module V (�), there exists a non-degenerate
sesquilinear form 〈 | 〉θ (unique up to a scalar multiple) with the distinguished property

〈E pqv|w〉θ = (−1)(θ−1)[(p)+(q)]〈v|Eqpw〉θ ,
with θ = 1 or 2 relating to two inequivalent forms. The irreducible, finite dimensional module V (�)
is said to be type θ unitary if 〈 | 〉θ is positive definite on V (�), and the corresponding representation
is said to be type θ unitary. Equivalently, for a finite dimensional unitary irreducible representation
π , we require an inner product such that the linear operators π (Epq) satisfy the Hermiticity condition,[

π (E pq )
]† = (−1)(θ−1)[(p)+(q)]π (Eqp), (9)

where † denotes normal Hermitian conjugation defined by([
π (E pq )

]†)
αβ

= [π (E pq )
]
βα

,

with A denoting the matrix with complex entries conjugate to those of A.
Using the bilinear form on the fundamental weights

(εi , ε j ) = δi j , (εi , δμ) = 0, (δμ, δν) = −δμν,
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that was discussed in Ref. 4, we have a non-degenerate bilinear form on the weights given by

(
�,�′) =

m∑
i=1

�i�
′
i −

n∑
μ=1

�μ�′
μ.

We also have a distinguished system of simple roots given by

� = {εi − εi+1, εm − δ1, δμ − δμ+1

∣∣ 1 ≤ i < m, 1 ≤ μ < n
}
. (10)

Furthermore, the sets of even and odd positive roots are given, respectively, by

�+
0 = {εi − ε j | 1 ≤ i < j ≤ m} ∪ {δμ − δν | 1 ≤ μ < ν ≤ n},

�+
1 = {εi − δμ | 1 ≤ i ≤ m, 1 ≤ μ ≤ n}.

Define ρ to be the graded half-sum of positive roots, i.e.,

ρ = 1

2

∑
α∈�+

0

α − 1

2

∑
β∈�+

1

β

= 1

2

m∑
j=1

(m − n − 2 j + 1)ε j + 1

2

n∑
ν=1

(m + n − 2ν + 1)δν.

Before proceeding, we remind the reader of some useful results. It is well known3 that any finite
dimensional type 1 unitary representation is completely reducible, and that the tensor product of two
type 1 unitary representations is also type 1 unitary. We therefore have:3

Theorem 1. The tensor product of two type 1 unitary irreducible representations decomposes
completely into type 1 unitary irreducible representations.

Furthermore, one can easily verify the following.

Theorem 2. Let V (�) and V (�′) be irreducible type 1 unitary modules. Then V (� + �′) is
also irreducible type 1 unitary and occurs in V (�) ⊗ V (�′).

It was shown in Refs. 1 and 2 that the type 1 unitary irreducible representations are completely
characterised by conditions on the highest weight labels:

Theorem 3. The irreducible highest weight gl(m|n)-module V (�) is type 1 unitary if and only
if � is real and satisfies

(i) (� + ρ, εm − δn) > 0; or
(ii) there exists an odd index μ ∈ {1, 2, . . . , n} such that

(� + ρ, εm − δμ) = 0 = (�, δμ − δn).

Following Kac,28 a finite dimensional irreducible V (�) is called typical if it splits in any finite
dimensional module. In other words, if it is a submodule, then it must occur as a direct summand.
If V (�) is not typical, it is said to be atypical. Case (i) of the theorem corresponds to the typical
unitary irreducible modules, whereas case (ii) corresponds to the atypical ones. Details of the proof
of this theorem can be found in Ref. 1.

Given a representation π , its dual representation π* is defined by29

π∗(E pq ) = − [π (E pq )
]T

,

where T denotes supertranspose. Explicitly, in a homogeneous basis {eα} of V , the supertranspose
is defined as ([

π (E pq )
]T)

αβ
= (−1)[(p)+(q)](β)

[
π (E pq )

]
βα

,
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where (β) denotes the grading of the homogeneous basis vector eβ , that is, (β) = 0 (respectively 1)
if eβ is even (respectively odd).

Following Ref. 30, we now show that the type 1 and 2 unitary representations are related by
duality in the following sense. If V is a type θ unitary module with corresponding representation π ,
so that Eq. (9) is satisfied, then the dual representation π* satisfies([

π∗(E pq )
]†)

αβ
= [π∗(E pq )

]
βα

= −
([

π (E pq )
]T)

βα

= −(−1)[(p)+(q)](α)
[
π (E pq )

]
αβ

= −(−1)[(p)+(q)][(α)+θ−1]
[
π (Eqp)

]
βα

= −(−1)[(p)+(q)][(α)+(β)+θ−1]
([

π (Eqp)
]T)

αβ

= (−1)[(p)+(q)][(α)+(β)+θ−1] [π∗(Eqp)
]
αβ

.

Using the fact that (α) + (β) = (p) + (q), i.e., the action of an even generator does not change the
grading of a vector in the module, whereas that of an odd generator does, we have[

π∗(E pq )
]† = (−1)[(p)+(q)]θ

[
π∗(Eqp)

]
.

We therefore have the following:30

Theorem 4. The dual of a type 1 unitary irreducible representation is a type 2 unitary repre-
sentation and vice versa.

This relationship via duality between the type 1 unitary and type 2 unitary irreducible represen-
tations then allows a complete classification of type 2 unitary irreducible representations with the
following result:1, 2

Theorem 5. The irreducible highest weight gl(m|n)-module V (�) is type 2 unitary if and only
if � is real and satisfies

(i) (� + ρ, ε1 − δ1) < 0; or
(ii) there exists an even index k ∈ {1, 2, . . . , m}, such that

(� + ρ, εk − δ1) = 0 = (�, εk − ε1).

IV. IRREDUCIBLE COVARIANT TENSOR AND NON-TENSORIAL REPRESENTATIONS

The type 1 unitary irreducible representations of gl(m|n) under consideration in the current
article comprise representations which are as follows:

(a) Covariant tensor, i.e., those which occur in the tensor product of a number of copies of the
vector representation V (ε1) with itself;

(b) Non-tensorial;
(c) Those which occur in the tensor product of an irreducible representation of class (a) with a

unitary one dimensional representation. For the purposes of this article, we simply refer to the
third class of representations as extended tensor representations.

Technically, representations belonging to the third class may be non-tensorial, but we distinguish
them because matrix element formulae for representations of this general form have not yet been
considered in the literature.
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The covariant tensor representations are discussed by Gould and Zhang in the context of their
classification scheme1 (referred to as “contravariant”) and also more recently considered by Stoilova
and Van der Jeugt18 and Molev19 (where they are referred to, though, as “covariant”).

The type 1 unitary irreducible representations that we consider in this article then fall into
several distinct cases, and so our matrix element formulae that we develop here combine several
previous works with a genuinely new case (although somewhat simplistic) into a single formalism
as indicated in the following:

(a) The matrix element formulae of Stoilova and Van der Jeugt18 and Molev19 corresponding to
the irreducible covariant tensor representations, comprising both typical and atypical repre-
sentations, but all of which are type 1 unitary;

(b) The matrix element formulae of Palev,17 corresponding to the so-called essentially typical
representations.

(c) The matrix element formulae for irreducible extended tensor representations, some of which
have not been covered in the existing literature.

We point out that there is some overlap between cases (a) and (b) above. In fact, all of the irre-
ducible typical unitary type 1 representations are either covariant tensor representations considered
by Molev and Stoilova and Van der Jeugt or essentially typical and agree with the results of Palev in
case (b). The typical irreducible representations which are non-tensorial, however, comprise all the
non-tensorial type 1 unitary irreducible representations, except those that occur in case (c). In the
current article, case (c) is genuinely new. Most importantly, we provide here a universal formalism
combining all of these cases. By contrast, in this context the atypical representations are either
covariant tensor or a tensor product of a covariant tensor representation with a one dimensional
representation.

As a result of the definition of unitary representation, particularly due to the existence of a
positive definite sesquilinear form naturally inherited throughout the canonical subalgebra embed-
dings, complete reducibility (in the subalgebra sense) follows immediately for the type 1 unitary
representations (similarly the type 2 unitary representations also).

A great deal of this discussion can be made explicit by applying the conditions of atypicality for
irreducible type 1 unitary representations given in the classification scheme of Gould and Zhang1, 2

to the highest weight of the irreducible representation.
Keeping in mind the results of Theorems 1 and 2, we find that we are able to characterise the

irreducible type 1 unitary representations in the following way. We make use of the system of simple
roots of gl(m|n) given in Eq. (10), extended by an additional weight (ϕn) as follows:

ϕi = εi − εi+1, 1 ≤ i < m,

ϕm = εm − δ1,

ϕμ = δμ − δμ+1, 1 ≤ μ < n,

ϕn = δn.

We refer to this extended simple root system as �′. Note that throughout we use the notation n to
indicate that the index is odd (i.e., μ = n), to avoid any ambiguity.

Relative to the inner product (�, �′) on the weights, we may define a weight basis dual to �′

(in the graded sense) which is the analogue of the fundamental dominant weights for Lie algebras as

ωi = (1, 1, . . . , 1︸ ︷︷ ︸
i

, 0, 0, . . . , 0︸ ︷︷ ︸
m−i

| 0, 0, . . . , 0︸ ︷︷ ︸
n

), 1 ≤ i ≤ m,

ωμ = (−1,−1, . . . ,−1︸ ︷︷ ︸
m

| 1, 1, . . . , 1︸ ︷︷ ︸
μ

, 0, 0, . . . , 0︸ ︷︷ ︸
n−μ

), 1 ≤ μ ≤ n,

so that

(ωi , ϕ j ) = δi j , (ωμ, ϕν) = −δμν, (ωi , ϕν) = 0 = (ων, ϕi ).
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It is straightforward to verify that under the classification scheme outlined in Sec. III, particularly
Theorem 3, the ωi are type 1 unitary, and so is ωn . The ωμ for 1 ≤ μ < n, however, are type 2
unitary. So while we can expand � as

� =
m∑

i=1

(�,ϕi )ωi −
n∑
ν

(λ, ϕν)ων, (11)

in this form it is not clear that V (�) would be irreducible type 1 unitary. This can be achieved,
however, by describing such highest weights in terms of a basis consisting of only type 1 unitary
weights. Given that the ωμ are type 2 unitary for 1 ≤ μ < n, we choose a slightly modified weight
basis, denoted {�r, ε, δ}, which is no longer dual to the extended simple root system, but consists
of only type 1 unitary highest weights. We call these the type 1 unitary graded fundamental weights,
defined as

�i = ωi , 1 ≤ i < m,

�μ = (μ + 1)ωm + ωμ, 1 ≤ μ < n,

ε = ωm,

δ = ωn.

From Eq. (11), we can then write

� =
m−1∑
i=1

(�,ϕi )�i −
n−1∑
ν=1

(�,ϕν)�ν +
(

(�,ϕm) +
n−1∑
ν=1

(ν + 1)(�,ϕν)

)
ε − (�,ϕn)δ. (12)

With � = (�0
1,�

0
2, . . . , �

0
m | �1

1,�
1
2, . . . , �

1
n), we can see that

(�,ϕi ) = �0
i − �0

i+1, i = 1, 2, . . . , m − 1,

and

(�,ϕν) = −�1
ν + �1

ν+1, ν = 1, 2, . . . , n − 1,

so that 0 ≤ (�,ϕi ) ∈ Z and 0 ≤ −(�,ϕν) ∈ Z since � is dominant. In other words, the first two of
the four terms given in the expansion of � in Eq. (12) are a Z+-linear combination of the subset

{�i , �μ | 1 ≤ i < m, 1 ≤ μ < n},
all of which correspond to irreducible type 1 unitary representations that are tensorial. Therefore
this part of the expansion of � comprises only tensorial weights and therefore is itself tensorial.

Concerning the coefficient of ε in the expansion (12) of �, consider the following.

Lemma 1. The irreducible gl(m|n) module V (γ ε) is type 1 unitary if and only if γ = 0, 1, 2, . . . ,
n − 1 or n − 1 < γ ∈ R.

Proof. This follows immediately from the classification result of Theorem 3. Note that in the
case γ = 0, 1, 2, . . . , n − 1, V (γ ε) is atypical and n − 1 < γ ∈ R corresponds to the case V (γ ε)
is typical. �

The significance of this result is that by Theorem 2 and the expansion (12) of �, if V (�)
is irreducible type 1 unitary, then so is V (� + γ ε), specifically with γ being of the form of the
coefficient of ε in Eq. (12) and satisfying the conditions of Lemma 1.

In fact, when γ (i.e., the coefficient of ε in (12)) satisfies the conditions of Lemma 1 and only
takes integer values, this will also give rise to a tensorial representation. In the case γ > n − 1
and is non-integer (and typical), this will correspond to a non-tensorial representation. It is these
representations which include the results of Palev17 that were not treated in the covariant tensor case
by Stoilova and Van der Jeugt18 or Molev.19
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Finally, it is easily seen that

(�,ϕn) = −�1
n ∈ R,

so the coefficient of δ in (12) may be real in general. Note the following.

Lemma 2. For any ω ∈ R, the irreducible gl(m|n) module V (ωδ) is type 1 unitary and one
dimensional.

Proof. The fact that the module is type 1 unitary (and atypical in fact) is yet another direct
consequence of Theorem 3. Using the commutation relations, it is also straightforward to see that
the module is one dimensional for any value ω ∈ R. �

Note: These one dimensional modules are also type 2 unitary as can be seen from Theorem 5.
In fact these are the unique irreducible modules that are both type 1 and type 2 unitary.

The fourth and final term in the expansion (12) of � is clearly relevant to Lemma 2. Theorem 2
then indicates that a highest weight � with a non-trivial component of δ is non-tensorial and occurs
in the tensor product of a one dimensional module (i.e., V (ωδ)) with either a tensorial representation
(like those considered in Refs. 18 and 17) or a non-tensorial representation, which also includes
those considered in Ref. 17.

We present a summary of the discussion and results of this section in the following theorem.

Theorem 6. The highest weight � of an irreducible type 1 unitary gl(m|n) representation is
expressible as

� = �0 + γ ε + ωδ,

where �0 is the highest weight of an irreducible tensorial (type 1 unitary) representation, γ ∈ R
satisfies the conditions of Lemma 1, and ω ∈ R.

The importance of the discussion in this section is that it puts our results of Sec. VI into
context. In Sec. VI, we determine matrix element formulae for the gl(m|n) generators on any finite
dimensional type 1 unitary representation. Theorem 6 gives us a straightforward characterisation
of all irreducible type 1 unitary irreducible representations relative to the cases (a), (b), and (c)
mentioned at the beginning of this section.

(a) In the case ω = 0 and γ an integer, our results will recover those of Stoilova and Van der
Jeugt18 and a subset of the results of Palev17 which are also tensorial;

(b) For ω = 0 and non-integer values of γ , the representations are non-tensorial, and our re-
sults once again include the work of Palev.17 For the case under consideration, i.e., unitary
representations, these non-tensorial representations are all essentially typical.

(c) For ω 	= 0, however, our formulae take into account cases that have not appeared in the
literature. In this case, the representations are generally non-tensorial, although in a somewhat
simplistic sense. They correspond to the extended tensor representations discussed earlier. For
this case, there is some translational invariance in the sense that the matrix element formulae
that we derive in Sec. VI do not depend on ω. In addition, for distinct values of ω, these
representations will be isomorphic as representations of sl(m|n).

V. BRANCHING RULES

Throughout this paper, where appropriate we use the Gelfand-Tsetlin (GT) basis notation where
λr, p is the weight label located at the rth position in the pth row. The GT patterns for gl(m|n + 1)
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that we consider can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1,m+n+1 λ2,m+n+1 · · · λm,m+n+1 | λ1̄,m+n+1 λ2̄,m+n+1 · · · λn̄,m+n+1 λn+1,m+n+1

λ1,m+n λ2,m+n · · · λm,m+n | λ1̄,m+n λ2̄,m+n · · · λn̄,m+n

...
...

. . .

λ1,m+1 λ2,m+1 · · · λm,m+1 | λ1̄,m+1

· · ·
λ1,m λ2,m · · · λm,m

...
. . .

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)
where each row is a highest weight corresponding to an irreducible representation permitted by the
branching rule for the subalgebra chain

gl(m|n + 1) ⊃ gl(m|n) ⊃ · · · ⊃ gl(m|1) ⊃ gl(m) ⊃ gl(m − 1) ⊃ · · · ⊃ gl(1). (14)

With regards to the branching rules, using the notation above, we first recall the branching
conditions presented in Ref. 4, which serve as a necessary condition on the gl(m|p) highest weights
occurring in the branching rule of an irreducible gl(m|p + 1) highest weight representation.

Theorem 7. (Ref. 4) For r ≥ m + 1, the following conditions on the dominant weight labels
must hold in the pattern (13):

λμ,r+1 ≥ λμ,r ≥ λμ+1,r+1, 1 ≤ μ ≤ n,

λi,r+1 ≥ λi,r ≥ λi,r+1 − 1, 1 ≤ i ≤ m.

We also make use of the results of Refs. 31 and 32 specific to gl(m|1) ⊃ gl(m), adapted to the
type 1 unitary representations under consideration.

Theorem 8. (Refs. 31 and 32) For a unitary type 1 irreducible representation V (�) of gl(m|1),
using the notation of (13), we have the following conditions on the dominant weight labels:

λi,m+1 ≥ λi,m ≥ λi,m+1 − 1, 1 ≤ i ≤ m − 1,

λm,m+1 ≥ λm,m ≥ λm,m+1 − 1, if (� + ρ, εm − δ1) > 0 (i.e., only if � typical),

λm,m = λm,m+1, if (� + ρ, εm − δ1) = 0 (i.e., only if � atypical).

For the general gl(m|n + 1) branching rule, we have the following result.

Theorem 9. For a unitary type 1 irreducible gl(m|n + 1) representation, the basis vectors can
be expressed in the form (13), with the following conditions on the dominant weight labels:

(1) For r ≥ m + 1,
λμ,r + 1 ≥ λμ,r ≥ λμ + 1,r + 1, 1 ≤ μ ≤ n,
λi,r + 1 ≥ λi,r ≥ λi,r + 1 − 1, 1 ≤ i ≤ m,
(i.e result of Theorem 7);

(2) λi,m + 1 ≥ λi,m ≥ λi,m + 1 − 1, 1 ≤ i ≤ m − 1,
λm,m + 1 ≥ λm,m ≥ λm,m + 1 − 1, if (� + ρ, εm − δ1) > 0 (⇔ only if � typical),
λm,m = λm,m + 1, if (� + ρ, εm − δ1) = 0 (⇔ only if � atypical),
(i.e., result of Theorem 8);

(3) For 1 ≤ j ≤ m,
λi + 1,j + 1 ≥ λi,j ≥ λi,j + 1

(i.e., the usual gl(j) branching rules);
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(4) For each r such that m + 1 ≤ r ≤ m + n + 1, the rth row in (13) must correspond to a type
1 unitary highest gl(m|r) weight, and for each j such that 1 ≤ j ≤ m, the jth row in (13) must
correspond to a highest gl(j) weight.

In the case of covariant tensor representations, it is easily verified that our branching rules
coincide with those already presented by Stoilova and Van der Jeugt in Ref. 18. Otherwise, the rep-
resentation must be non-tensorial and essentially typical (modulo a one dimensional representation
with highest weight of the form ωδ), and our branching rules are the full branching conditions given
in Theorem 7, which furthermore coincide with the branching rules given by Palev for the essentially
typical representations.17, 33 For a proof of the branching rule for essentially typical representations,
see Appendix A.

VI. MATRIX ELEMENTS OF GENERATORS

We now recall some of the definitions and results from our article4 which will be used to derive
the matrix element formulae of the current article. Let Q[r] and Q̄[r ] (1 ≤ r ≤ m + n + 1) denote
the projection operators for gl(m|n + 1) which are analogues of the gl(m|n) projections P[s] and
P̄[s] (1 ≤ s ≤ m + n), respectively. The gl(m|n + 1) characteristic roots are denoted βr and β̄r

which are the respective counterparts to the gl(m|n) characteristic roots αs and ᾱs . We also let ψp

and φp denote the odd gl(m|n) vector and contragredient vector operators respectively defined by

ψ p = (−1)(p) E p,m+n+1 = B p
m+n+1,

φp = (−1)(p) Em+n+1,p = −(−1)(p)Bm+n+1
p .

Let αr denote characteristic roots corresponding to the gl(m|n)-module V (�) and βr denote the
characteristic roots of the gl(m|n + 1)-module V (�̃) such that V (�) ⊆ V (�̃) as a gl(m|n)-module.
In Ref. 4, we found that the betweenness conditions imply, for 1 ≤ i ≤ m,

βi =
{

αi , �̃i = 1 + �i ,

αi − 1, �̃i = �i ,

which leads us to make use of the following index sets:

I0 = {1 ≤ i ≤ m | αi = βi },
Ī0 = {1 ≤ i ≤ m | αi = 1 + βi },
I1 = {1 ≤ μ ≤ n},
I = I0 ∪ I1,

I ′ = Ī0 ∪ I1,

Ĩ = I ∪ {m + n + 1},

Ĩ ′ = I ′ ∪ {m + n + 1}.
The (even) gl(m|n) invariants

cr = Q[r ]m+n+1
m+n+1, c̄r = Q̄[r ] m+n+1

m+n+1 , 1 ≤ r ≤ m + n + 1 (15)

can be shown to satisfy

Q[r ]p
m+n+1 =

∑
q∈I

ψ[q]p(βr − αq − (−1)(q))−1cr , r ∈ Ĩ ,

Q̄[r ] m+n+1
p = −

∑
q∈I ′

φ[q]p(β̄r − ᾱq − (−1)(q))−1c̄r , r ∈ Ĩ ′
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and have eigenvalues given by

cr =
∏

k∈ Ĩ ,k 	=r

(βr − βk)−1
∏
s∈I

(βr − αs − (−1)(s)), r ∈ Ĩ , (16)

cr = 0, r /∈ Ĩ ,

c̄r =
∏

k∈ Ĩ ′,k 	=r

(
β̄r − β̄k

)−1∏
s∈I ′

(
β̄r − ᾱs − (−1)(s)

)
, r ∈ Ĩ ′, (17)

c̄r = 0, r /∈ Ĩ ′.

It was also argued in Ref. 4 that we may define invariants δr and δ̄r satisfying

(−1)(q)ψ[r ]pφ[r ]q = δr P[r ]p
q , r ∈ I ′, (18)

φ[r ]pψ[r ]q = δ̄r P̄[r ] q
p , r ∈ I, (19)

with eigenvalues given by

δr =
∏

q∈I,q 	=r

(αq − αr + (−1)(q))−1
∏
s∈ Ĩ

(βs − αr ), r ∈ I ′, (20)

δr = 0, r /∈ I ′,

δ̄r = −
∏

q∈I ′,q 	=r

(ᾱq − ᾱr + (−1)(q))−1
∏
s∈ Ĩ ′

(β̄s − ᾱr ), r ∈ I, (21)

δ̄r = 0, r /∈ I.

Taking p = q = m + n in Eqs. (18) and (19), we obtain the equations

ψ[r ]m+nφ[r ]m+n = −δr P[r ]m+n
m+n, (22)

φ[r ]m+nψ[r ]m+n = δ̄r P̄[r ] m+n
m+n , (23)

where we note that

P[r ]m+n
m+n, P̄[r ] m+n

m+n

are the gl(m|n) analogues of the invariants cr and c̄r of Eq. (15) which may similarly be expressed
in terms of the gl(m|n) and gl(m|n − 1) characteristic roots in accordance with Eqs. (16) and
(17), respectively. Thus the operators on the right hand side of Eqs. (22) and (23) may be simply
evaluated as a rational polynomial function in the representation labels of gl(m|n + 1), gl(m|n) and
gl(m|n − 1).

In the case of unitary representations with(
ψ[r ]p

)† = φ[r ]p,

we note that Eqs. (22) and (23) determine the square of the matrix elements of φm + n and ψm + n,
respectively. Thus we take the formulae arising from Eqs. (22) and (23) to determine the matrix
elements.

Before this can be done, we need a method for determining the non-elementary generator
matrix elements of φp and ψp for p < m + n. To this end, we adopt an approach that applies the
characteristic identity (6) that was first used in Ref. 34.

We first note that it is straightforward to verify that

(βr − αp)−1ψ[p] = ψ[p](βr − αp − (−1)(p))−1,

φ[p](βr − αp)−1 = (βr − αp − (−1)(p))−1φ[p].
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Let B denote the characteristic matrix for gl(m|n + 1), being the analogue of A, defined earlier in
Eq. (5). Using the projection operators

Q[r ] =
m+n+1∏

k 	=r

( B − βk

βr − βk

)
,

the characteristic identity can be expressed as

Bs
u Q[r ]u

t = βr Q[r ]s
t , 1 ≤ r, s, t, u ≤ m + n + 1,

which then leads to

Bs
m+n+1 Q[r ]m+n+1

t + Bs
u Q[r ]u

t = βr Q[r ]s
t ,

with u being summed from 1 to m + n. Note that we are using the summation convention where we
sum over repeated indices from 1 up to either m + n or m + n + 1 depending on the context. If it
is not obvious, we make an explicit note.

If we further restrict the s index in the previous equation up to m + n, we may then write

ψ s Q[r ]m+n+1
t = (βr − A)s

u Q[r ]u
t .

Multiplying from the left by P[u] gives

P[u]s
wψw Q[r ]m+n+1

t = P[u]s
x (βr − A)x

v Q[r ]vt

⇒ ψ[u]s Q[r ]m+n+1
t = (βr − αu)P[u]s

v Q[r ]vt

⇒ (βr − αu)−1ψ[u]s Q[r ]m+n+1
t = P[u]s

v Q[r ]vt

⇒ ψ[u]s(βr − αu − (−1)(u))−1 Q[r ]m+n+1
t = P[u]s

v Q[r ]vt . (24)

Alternatively, the characteristic identity may be written

Q[r ]s
uBu

t = Q[r ]s
tβr .

Setting s = m + n + 1 and restricting t to values up to m + n leads to

Q[r ]m+n+1
v Bv

t + Q[r ]m+n+1
m+n+1Bm+n+1

t = Q[r ]m+n+1
t βr

⇒ Q[r ]m+n+1
v Bv

t − (−1)(t)crφt = Q[r ]m+n+1
t βr

⇒ −(−1)(t)crφt = Q[r ]m+n+1
v (βr − A)vt .

Multiplying on the right by P[u]t
w(−1)(w) then summing over t gives

−(−1)(t)+(w)crφt P[u]t
w = (−1)(w) Q[r ]m+n+1

v (βr − A)vt P[u]t
w

⇒ −crφ[u]w = (−1)(w) Q[r ]m+n+1
v P[u]vw(βr − αu)

⇒ −crφ[u]w(βr − αu)−1 = (−1)(w) Q[r ]m+n+1
v P[u]vw

⇒ −(−1)(w)cr (βr − αu − (−1)(u))−1φ[u]w = Q[r ]m+n+1
v P[u]vw.

Multiplying Eq. (24) on the right by P[u] gives

ψ[u]s(βr − αu − (−1)(u))−1 Q[r ]m+n+1
v P[u]vw = P[u]s

t Q[r ]t
v P[u]vw

⇒ −(−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))−1crφ[u]w = P[u]s
t Q[r ]t

v P[u]vw.

We now must apply the shift operators ψ[u]s and φ[u]w in the above expression. Three cases must
be considered:
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For odd u we move ψ[u]s to the right to give

−(−1)(w)(βr − αu)−1ψ[u]s(βr − αu − (−1)(u))−1crφ[u]w = P[u]s
t Q[r ]t

v P[u]vw

⇒ −(−1)(w)(βr − αu)−1(βr − αu − (−1)(u))−1crψ[u]sφ[u]w = P[u]s
t Q[r ]t

v P[u]vw,

where in the last step we have used the fact that (βr − αu − (−1)(u))− 1cr is independent of u (for
odd u) and so commutes with ψ[u]s. Equation (18) then leads to

ρru P[u]p
q = (P[u]Q[r ]P[u])p

q ,

where

ρru = −(βr − αu − (−1)(u))−1(βr − αu)−1crδu, (u) = 1.

Note that the above expression may be used in the gl(n) case by setting (u) = 0 when shifting labels
at the subalgebra level m or lower.

For even u and u 	= r, the invariant cr will have two extra terms when located between ψ[u]s

and φ[u]w due to index set considerations. We then have

− (−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))−1crφ[u]w

= −(−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))−1(βr − βu)−1(βr − αu − (−1)(u))φ[u]wcr

= −(−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − βu)−1φ[u]wcr

= −(−1)(w)(βr − αu)−1(βr − βu)−1ψ[u]sφ[u]wcr

= −(−1)(w)(βr − αu)−1(βr − αu + 1)−1ψ[u]sφ[u]wcr ,

since u ∈ I′, which gives

ρru = −(βr − αu)−1(βr − αu + 1)−1crδu, (u) = 0, r 	= u.

Finally, for even u and u = r, we have

− (−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))−1crφ[u]w

= −(−1)(w)ψ[u]s(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))−1(βr − αu − (−1)(u))φ[u]wcr

= −(−1)(w)ψ[u]s(βr − αu − (−1)(u))−1φ[u]wcr

= −(−1)(w)(βr − αu)−1ψ[u]sφ[u]wcr

= (−1)(w)ψ[u]sφ[u]wcr ,

since r = u and u ∈ I′, which gives

ρuu = cuδu, (u) = 0.

Combining the above three cases, we have

ρru P[u]p
q = (P[u]Q[r ]P[u])p

q ,

where

ρru = −(βr − αu + 1)−1(βr − αu)−1crδu, (u) = 1,

ρru = −(βr − αu + 1)−1(βr − αu)−1crδu, (u) = 0, u 	= r,

ρuu = cuδu, (u) = 0,

ρru = (βr − αu − 1)−1(βr − αu)−1crδu, gl(m) case,
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is a gl(m|n) invariant whose eigenvalues in fact determine the square of gl(m|n + 1): gl(m|n) reduced
vector Wigner coefficients. We note that the invariants ρru are only non-vanishing when r ∈ Ĩ and
u ∈ I′. Similarly for the adjoint projectors, we have

(P̄[u]Q̄[r ]P̄[u]) q
p = ρ̄ru P̄[u] q

p , (25)

where the ρ̄ru is a gl(m|n) invariant operator given by

ρ̄ru = (β̄r − ᾱu + 1)−1(β̄r − ᾱu)−1c̄r δ̄u, (u) = 1,

ρ̄ru = (β̄r − ᾱu + 1)−1(β̄r − ᾱu)−1c̄r δ̄u (u) = 0, u 	= r,

ρ̄uu = c̄u δ̄u, (u) = 0,

ρ̄ru = (β̄r − ᾱu − 1)−1(β̄r − ᾱu)−1c̄r δ̄u gl(m) case, (26)

whose eigenvalues determine the square of certain gl(m|n + 1): gl(m|n) reduced Wigner coefficients.
As in the Lie algebra case,35 the above equations are all we need to determine the matrix elements
of the gl(m|n + 1) generators. We note that ρ̄ru in Eq. (26) is non-vanishing only when r ∈ Ĩ ′ and
u ∈ I.

Remark: We make the observation that the expressions for c̄r and δ̄r , given in Eqs. (17) and (21),
respectively, take exactly the same form (up to an overall sign in the case of δ̄r ) as their counterparts
cr and δr of Eqs. (16) and (20), respectively. Specifically, the characteristic roots ᾱq and β̄q are
merely substituted for αq and βq, respectively, and the index sets I′ and Ĩ ′ are substituted for I and
Ĩ over the products. Clearly this symmetry also extends to the expressions for ρru and ρ̄ru .

A. Matrix element formulae

In general the gl(m|n + 1) generators

ψ p = (−1)(p) E p,m+n+1, φp = (−1)(p) Em+n+1,p

may be resolved into a sum of simultaneous shift components

ψ p =
∑

u

ψ[um+num+n−1 . . . u p+1u p]p, (27)

φp =
∑

u

φ[um+num+n−1 . . . u p+1u p]p, (28)

where the summations in Eqs. (27) and (28) are over all allowable shift components ur for the
subalgebra gl(m|r − m) (in the case r > m) or the subalgebra gl(r) in the case r ≤ m. In other words,
ur takes all allowable shift values in the range 1, 2, . . . , r. The simultaneous shift components of
Eqs. (27) and (28) may be defined recursively according to

ψ[um+num+n−1 . . . uq+1uq ]p =
q∑

s=1

ψ[um+n . . . uq+1]s P̄[uq ] p
s

=
q∑

s=1

P[uq ]p
sψ[um+n . . . uq+1]s, 1 ≤ p ≤ q,

φ[um+num+n−1 . . . uq+1uq ]p =
q∑

s=1

(−1)(p)+(s)φ[um+n . . . uq+1]s P[uq ]s
p

=
q∑

s=1

P̄[uq ] s
p φ[um+n . . . uq+1]s, 1 ≤ p ≤ q.
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Thus we obtain, by repeated application of Eqs. (22) and (25)

(−1)(p)ψ[um+n . . . u p]pφ[um+n . . . u p]p = δum+n P[u pu p+1 . . . um+n−1um+num+n−1 . . . u p]p
p

= δum+n cu p

m+n∏
s=p+1

ρus ,us−1 (29)

and similarly

φ[um+n . . . u p]pψ[um+n . . . u p]p = δ̄um+n c̄u p

m+n∏
s=p+1

ρ̄us ,us−1 , (30)

which is the required generalisation of Eq. (23). We remark that in Eqs. (29) and (30) above, the
invariants ρus ,us−1 , cus and δus−1 are expressible in terms of the characteristic roots of gl(m|s − m)
and gl(m|s − m − 1) by analogy with our previous formulae (or the Lie algebras gl(s) and
gl(s − 1) when s ≤ m). In the case of unitary representations, Eqs. (29) and (30) determine the
matrix elements of the gl(m|n + 1) generators φp and ψp, respectively.

We now give closed form expressions for the matrix elements of the generators El,p +1 and Ep + 1,l

(1 ≤ l ≤ p). Once again using the Gelfand-Tsetlin (GT) basis notation with the label λr, p located at
the rth position in the pth row. The matrix of Ep + 1,p + 1 is diagonal with the entries

p+1∑
r=1

λr,p+1 −
p∑

r=1

λr,p.

We consider a fixed GT pattern denoted by |λq, s〉 and proceed by first obtaining the matrix elements
of the elementary generators Ep,p + 1 and Ep + 1,p.

We first resolve Ep,p + 1 into its shift components, which gives

E p,p+1|λq,s〉 =
p∑

r=1

(−1)(p)ψ[r ]p|λq,s〉

=
p∑

r=1

N p
r (λq,p+1; λq,p; λq,p−1)|λq,s + �r,p〉,

where |λq, s + �r, p〉 indicates the GT pattern obtained from |λq, s〉 by increasing the label λr, p by
one unit and leaving the remaining labels unchanged.

Remark: We adopt the convention throughout the article that |λq,s + �r,p〉 is identically zero if
the branching rules are not satisfied. In other words, |λq,s + �r,p〉 does not form an allowable GT
pattern. In such a case, the matrix element is understood to be identically zero.

Since the shift operators satisfy the Hermiticity condition

φ[r ]p = [ψ[r ]p
]†

,

then we may use Eq. (23) to express the matrix elements N p
r as

N p
r (λq,p+1; λq,p; λq,p−1) = 〈λq,s |δ̄r,pc̄r,p|λq,s〉1/2,

where δ̄r,p and c̄r,p are either invariants of the gl(m|p − m) subalgebra for m < p ≤ m + n or
invariants of the gl(p) subalgebra for 0 < p ≤ m.

The matrix element N p
r has an undetermined sign (or phase factor). However, the Baird and

Biedenharn convention sets the phases of the matrix elements of the elementary generators Ep,p + 1

to be real and positive—we will follow35 and adopt this convention. Matrix element phases for the
non-elementary generators will be discussed later in this section.
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Expressions for the eigenvalues of the invariants c̄r and δ̄r independent of the index sets were
given in Ref. 4, namely

c̄i = (βi − αi )
m∏

k 	=i

(
βk − βi − 1

αk − βi − 1

) n+1∏
ν=1

(βν − βi − 2)−1
n∏

ν=1

(αν − βi − 2), 1 ≤ i ≤ m,

c̄μ =
m∏

k=1

(
βk − βμ + 1

αk − βμ + 1

) n+1∏
ν 	=μ

(βν − βμ)−1
n∏

ν=1

(αν − βμ), 1 ≤ μ ≤ n + 1,

and

δ̄i = (βi − αi + 1)
m∏

k 	=i

(
αk − αi

βk − αi

) n+1∏
ν=1

(βν − αi − 1)
n∏

ν=1

(αν − αi − 1)−1, 1 ≤ i ≤ m,

δ̄μ = −
m∏

k=1

(
αk − αμ + 2

βk − αμ + 2

) n+1∏
ν=1

(βν − αμ + 1)
n∏

ν 	=μ

(αν − αμ + 1)−1, 1 ≤ μ ≤ n.

To consider these invariants as invariants of the gl(m|p − m) subalgebra we need to extend our
notation. For the c̄ equation, we carry out the replacements βa → αa,p and αa → αa,p − 1. Similarly,
for the δ̄ equation, we have βa → αa,p + 1 and αa → αa,p. Similarly, a subscript has been added to
the index set notation to indicate the subalgebra level of the roots being compared so that for p ≥ m,
we have

I0,p = {1 ≤ i ≤ m | αi,p = αi,p+1},
Ī0,p = {1 ≤ i ≤ m | αi,p = 1 + αi,p+1},
I1,p = {1 ≤ μ ≤ p − m},

Ip = I0,p ∪ I1,p,

I ′
p = Ī0,p ∪ I1,p,

Ĩ p = Ip ∪ {p + 1},

Ĩ p
′ = I ′

p ∪ {p + 1}.
We then obtain

N p
i =

[ m∏
k 	=i=1

(
(αk,p − αi,p − 1)(αk,p − αi,p)

(αk,p−1 − αi,p − 1)(αk,p+1 − αi,p)

)

×
(∏p−m−1

ν=1 (αν,p−1 − αi,p − 2)
∏p−m+1

ν=1 (αν,p+1 − αi,p − 1)∏p−m
ν=1 (αν,p − αi,p − 2)(αν,p − αi,p − 1)

)]1/2

, p ≥ m + 1

N p
μ =

[ m∏
k 	=μ=1

(
(αk,p − αμ,p + 1)(αk,p − αμ,p + 2)

(αk,p−1 − αμ,p + 1)(αk,p+1 − αμ,p + 2)

)

×
(∏p−m−1

ν=1 (αν,p−1 − αμ,p)
∏p−m+1

ν=1 (αν,p+1 − αμ,p + 1)∏p−m
ν 	=μ=1(αν,p − αμ,p)(αν,p − αμ,p + 1)

)]1/2

, p ≥ m + 1.

Note that for the case p = m, we have

N m
r (λq,m+1; λq,m ; λq,m−1) = 〈λq,s |δ̄r,mc̄r,m |λq,s〉1/2,

where δ̄r,m is a gl(m|1) invariant but c̄r,m is a gl(m) invariant. That is, c̄r,m is dependent only on labels
at rows m and m − 1 of the GT pattern. These two rows of labels satisfy the usual gl(m) branching
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conditions. We may therefore obtain c̄r,m from Ref. 4 by allowing the index sets I and I′ to range
over all possible values and setting all parity factors to be 0 (even) as shown below:

c̄r =
∏

k∈ Ĩ ′,k 	=r

(
β̄r − β̄k

)−1 ∏
k∈I ′

(
β̄r − ᾱk − (−1)(k)

)
, r ∈ Ĩ ′

⇒ c̄i,p =
p∏

k 	=i

(ᾱi,p − ᾱk,p)−1
p−1∏
k=1

(ᾱi,p − ᾱk,p−1 − 1), i ≤ p ≤ m

=
p∏

k 	=i

(αk,p − αi,p)−1
p−1∏
k=1

(αk,p−1 − αi,p), i ≤ p ≤ m.

The above formula is consistent with that previously obtained for the U(m) case in Ref. 35.
Continuing with the p = m case, we are able to utilize the δ̄i equations given earlier but with

n = 0

δ̄i,m = (βm+1 − αi − 1)
m∏

k 	=i

(
αk − αi

βk − αi

)
, 1 ≤ i ≤ m.

After the change in notation βa → αa,m + 1 and αa → αa,m, we have

δ̄i,m = (αm+1,m+1 − αi,m − 1)
m∏

k 	=i

(
αk,m − αi,m

αk,m+1 − αi,m

)
, 1 ≤ i ≤ m,

allowing us to give the squared matrix element as(
N m

i

)2 = δ̄i,mc̄i,m

= (αm+1,m+1 − αi,m − 1)
m∏

k 	=i

(
αk,m − αi,m

αk,m+1 − αi,m

) m∏
k 	=i

(αk,m − αi,m)−1
m−1∏

k

(αk,m−1 − αi,m)

= (αm+1,m+1 − αi,m − 1)

∏m−1
k (αk,m−1 − αi,m)∏m
k 	=i

(
αk,m+1 − αi,m

) .
The final matrix element formula is then

N m
i = (αm+1,m+1 − αi,m − 1)1/2

(∏m−1
k (αk,m−1 − αi,m)∏m
k 	=i

(
αk,m+1 − αi,m

)
)1/2

.

For p < m, we can utilize the results for the U(m) case in Ref. 35. This matrix element formula
is given here for convenience:

N p
r =

(
(−1)p

∏p+1
k=1 (αk,p+1 − αr,p − 1)

∏p−1
k=1 (αr,p − αk,p−1)∏p

k 	=r (αr,p − αk,p + 1)(αr,p − αk,p)

)1/2

, p < m.

The method of obtaining the matrix elements of the non-elementary generators El,p +1 is similar.
Resolving El,p +1 (l < p) into simultaneous shift components, we have

El,p+1|λq,s〉 =
∑

u

ψ[u pu p−1 . . . ul+1ul ]
l |λq,s〉

=
∑

u

N [u p, u p−1, . . . , ul+1, ul ]|λq,s + �u p,p + . . . + �ul ,l〉,

where |λq,s + �u p,p + . . . + �ul ,l〉 indicates the GT pattern obtained from |λq,s〉 by increasing the
p − l + 1 labels λur ,r of the subalgebra gl(m|r − m) for r = l, . . . , p, by one unit and leaving the
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remaining labels unchanged. Here the matrix elements

N [u p, u p−1, . . . , ul+1, ul]

are given by

±〈λq,s |ψ†[u pu p−1 . . . ul+1ul]lψ[u pu p−1 . . . ul+1ul]
l |λq,s〉1/2.

Therefore, from Eqs. (26) and (30), we can express this matrix element as

N [u p, u p−1, . . . , ul ] = ± (δ̄u p c̄ul

)1/2
p∏

s=l+1

(
ρ̄us ,us−1

)1/2

= ± (δ̄u p c̄ul

)1/2
p∏

s=l+1

[−(β̄us − ᾱus−1 + 1)−1(β̄us − ᾱus−1 )−1c̄us δ̄us−1

]1/2
, (31)

= ±
p∏

r=l

Nr
ur

p∏
s=l+1

[
(β̄us − ᾱus−1 + 1)−1(β̄us − ᾱus−1 )−1

]1/2
, (32)

where the undefined sign is specified later in Sec. VI B and we have

β̄us − ᾱus−1 = (−1)(us−1)(λus−1 − us−1) − (−1)(us )(λus − us) + ((−1)(us−1) − (−1)(us ))(m + 1),
(33)

since

β̄r = (−1)(r )(−λr + r − m − 1) + m,

ᾱk = (−1)(k)(−λk + k − m − 1) + m.

Also note within Eq. (31), that the term (β̄us − ᾱus−1 − (−1)(us−1))−1 cancels the corresponding term
within the numerator of c̄us .

We may now obtain matrix elements of the lowering operators Ep + 1,p via the relation

〈(λ) − δrp|E p+1,p|(λ)〉 = 〈(λ)|E p,p+1|(λ − δrp)〉,
which holds on type 1 unitary representations. We define the translated raising operator E ′

p,p+1 as

〈(λ + δrp)|E ′
p,p+1|(λ)〉 = 〈(λ)|E p,p+1|(λ − δrp)〉.

Since our matrix elements are real, the translated raising operator E ′
p,p+1 is precisely the lowering

operator Ep + 1,p we seek. It is clear that, E ′
p,p+1 is simply obtained from Ep,p + 1 by making the

substitution λrp → λrp − 1 within the characteristic roots occurring in the matrix element formula
for Ep,p + 1. The final result is presented below in Sec. VII.

We now consider the matrix element N̄ [u p, u p−1, . . . , ul+1, ul ] of the non-elementary lowering
operators Ep + 1, l for (l < p). The calculation is analogous to the El,p +1 case given above. We obtain

N̄ [u p, u p−1, . . . , ul ] = ± (δu p cul

)1/2
p∏

s=l+1

(
ρus ,us−1

)1/2

= ± (δu p cul

)1/2
p∏

s=l+1

[−(βus − αus−1 + 1)−1(βus − αus−1 )−1cus δus−1

]1/2

= ±
p∏

r=l

N̄ r
ur

p∏
s=l+1

[
(βus − αus−1 + 1)−1(βus − αus−1 )−1]1/2

, (34)

where

βus − αus−1 = (−1)(us )(λus − us) − (−1)(us−1)(λus−1 − us−1) − ((−1)(us−1) − (−1)(us ))m − 1. (35)
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Remarks

1. In view of the Remark just before Subsection VI A, we may observe that in the formula (32)
for the non-elementary raising generators, making the substitutions Nr

ur
→ N̄ r

ur
, β̄us → βus ,

ᾱus−1 → αus−1 clearly gives the matrix element formula (34) for the non-elementary lowering
generators. This further highlights the symmetry of the expressions for the matrix elements in
interchange of the two types of characteristic roots ᾱr and αr.

2. It is understood that to apply the matrix element formula derived above, where possible terms
are cancelled first and reduced to the most simplified rational form before applying the formulae
and substituting weight labels.

3. All terms appearing in the square roots in the above formula are indeed positive numbers.
4. We remind the reader that in all cases we have adopted the convention that a shifted pattern

|λ′
q,s〉 is identically zero if the branching rules are not satisfied. In particular, the matrix element

corresponding to a forbidden GT pattern (i.e., one for which the branching rules of Theorem
9 are not satisfied) is identically zero.

B. Phases

The as yet undetermined sign in the above matrix element equations will now be examined.
Following the Baird and Biedenharn phase convention, we choose the phases of the generators
Ep,p + 1 to be real and positive. By Hermiticity, the phases of the generators Ep + 1,p are also positive.
The phases of the remaining non-elementary generators may then be calculated via the algebra
commutation relations. The phases of the matrix elements

N [u p, u p−1, . . . , ul+1, ul ], N̄ [u p, u p−1 . . . , ul+1, ul ]

are then given by the expression

S(N̄ [u p, u p−1, . . . , ul ]) = S(N [u p, u p−1, . . . , ul ]) ≡
p∏

s=l+1

(−1)(us−1)(us )S(us − us−1), (36)

where S(x) ∈ {−1, 1} is the sign of x, S(0) = 1 and, as usual, odd indices are considered greater than
even indices. The details can be found in Appendix B.

VII. SUMMARY OF MAIN RESULTS

Here we summarise the main results that have been derived in the current section, by presenting
the matrix element formulae for the generators of gl(m|n + 1) in an irreducible type 1 unitary
representation. The basis vectors can be expressed in the form (13), and we now give expressions
in terms of the weight labels λq,s, using the characteristic root equations (3), (4), (7), and (8).
Note also that the labels λq,s determining the basis vectors are subject to the branching rules of
Theorem 9.

For generators Ep + 1,p + 1, 1 ≤ p ≤ m + n, the matrices are diagonal with

p+1∑
r=1

λr,p+1 −
p∑

r=1

λr,p

as the entry coinciding with the vector |λq,s〉 in the ordered basis. Similarly, the matrix of the generator
E11 has entries λ11 on the diagonal.

For raising generators, our derivation makes use of the characteristic matrix Ā of Eq. (1). The
matrix elements of the elementary raising generators Ep,p + 1, 1 ≤ p ≤ m + n are determined by

E p,p+1|λq,s〉 =
p∑

r=1

N p
r (λq,p+1; λq,p; λq,p−1)|λq,s + �r,p〉,
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with N p
r given in terms of the GT basis labels as follows. For p ≥ m + 1,

N p
i =

[ m∏
k 	=i=1

(
(λk,p − λi,p − k + i − 1)(λk,p − λi,p − k + i)

(λk,p−1 − λi,p − k + i)(λk,p+1 − λi,p − k + i − 1)

)

×
(∏p−m−1

ν=1 (−λν,p−1 − λi,p + ν + i − m − 1)
∏p−m+1

ν=1 (−λν,p−m+1 − λi,p + ν + i − m − 2)∏p−m
ν=1 (−λν,p − λi,p + ν + i − m − 2)(−λν,p − λi,p + ν + i − m − 1)

)]1/2

,

N p
μ =

[ m∏
k=1

(
(λk,p + λμ,p − k − μ + m + 1)(λk,p + λμ,p − k − μ + m + 2)

(λk,p−1 + λμ,p − k − μ + m + 2)(λk,p+1 + λμ,p − k − μ + m + 1)

)

×
(∏p−m−1

ν=1 (−λν,p−1 + λμ,p + ν − μ + 1)
∏p−m+1

ν=1 (−λν,p+1 + λμ,p + ν − μ)∏p−m
ν 	=μ=1(−λν,p + λμ,p + ν − μ)(−λν,p + λμ,p + ν − μ + 1)

)]1/2

.

We also have (for the case p = m)

N m
i = (−λm+1,m+1 − λi,m − m + i − 1)1/2

(∏m−1
k (λk,m−1 − λi,m − k + i − 1)∏m
k 	=i

(
λk,m+1 − λi,m − k + i − 1

)
)1/2

.

Finally, for p < m,

N p
i =

(
(−1)p

∏p+1
k=1 (λk,p+1 − λi,p − k + i)

∏p−1
k=1 (λi,p − λk,p−1 − k + i + 1)∏p

k 	=i (λi,p − λk,p + k − i + 1)(λi,p − λk,p + k − i)

)1/2

,

which was derived for the Lie algebra case in Ref. 35. The above matrix element equations are
valid for all type 1 unitary irreducible representations. Our matrix element equations match those
given by Palev17 and Stoilova and Van der Jeugt18 where they each considered a subclass of these
representations. As mentioned previously, we have adopted the convention that the phase of the
matrix elements of the elementary generators are real and positive.

We may also give explicit expressions for the non-elementary raising generators El,p +1, l < p,
with

El,p+1|λq,s〉 =
∑

u

N [u p, u p−1, . . . , ul+1, ul ]|λq,s + �u p,p + . . . + �ul ,l〉,

where the sum is over all allowable shift components, as we have already described in Eqs. (27) and
(28). In this case, the matrix elements take on the form

N [u p, u p−1, . . . , ul ] = S(N [u p, u p−1, . . . , ul ])
∏p

r=l Nr
ur∏p

s=l+1

√
(β̄us − ᾱus−1 + 1)(β̄us − ᾱus−1 )

,

where the difference β̄us − ᾱus−1 in characteristic roots has been given in terms of the labels λq,s in
Eq. (33), and the phase S(N[up, up − 1, . . . , ul]) is given in Eq. (36).

For the lowering generators, we first give the elementary generators Ep + 1,p, 1 ≤ p ≤ m + n,
with

E p+1,p|λq,s〉 =
p∑

r=1

N̄ p
r (λq,p+1; λq,p; λq,p−1)|λq,s − �r,p〉.

For p ≥ m + 1,

N̄ p
i =

[ m∏
k 	=i=1

(
(λk,p − λi,p − k + i)(λk,p − λi,p − k + i + 1)

(λk,p−1 − λi,p − k + i + 1)(λk,p+1 − λi,p − k + i)

)

×
(∏p−m−1

ν=1 (−λν,p−1 − λi,p + ν + i − m)
∏p−m+1

ν=1 (−λν,p+1 − λi,p + ν + i − m − 1)∏p−m
ν=1 (−λν,p − λi,p + ν + i − m − 1)(−λν,p − λi,p + ν + i − m)

)]1/2

,
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N̄ p
μ =

[ m∏
k=1

(
(λk,p + λμ,p − k − μ + m)(λk,p + λμ,p − k − μ + m + 1)

(λk,p−1 + λμ,p − k − μ + m + 1)(λk,p+1 + λμ,p − k − μ + m)

)

×
(∏p−m−1

ν=1 (−λν,p−1 + λμ,p + ν − μ)
∏p−m+1

ν=1 (−λν,p+1 + λμ,p + ν − μ − 1)∏p−m
ν 	=μ=1(−λν,p + λμ,p + ν − μ − 1)(−λν,p + λμ,p + ν − μ)

)]1/2

.

For the case p = m, we have

N̄ m
i = (−λm+1,m+1 − λi,m − m + i)1/2

(∏m−1
k (λk,m−1 − λi,m − k + i)∏m
k 	=i

(
λk,m+1 − λi,m − k + i

)
)1/2

.

Finally, when p < m, we once again make use of the results in Ref. 9, namely

N̄ p
i =

(
(−1)p

∏p+1
k=1 (λk,p+1 − λi,p − k + i + 1)

∏p−1
k=1 (λi,p − λk,p−1 − k + i)∏p

k 	=i (λi,p − λk,p + k − i)(λi,p − λk,p + k − i − 1)

)1/2

.

The matrix elements N̄ [u p, u p−1, . . . , ul+1, ul ] of the non-elementary lowering operators Ep + 1,l

for (l < p) appears as

E p+1,l |λq,s〉 =
∑

u

N̄ [u p, u p−1, . . . , ul+1, ul ]|λq,s − �u p,p − . . . − �ul ,l〉,

and are given by

N̄ [u p, u p−1, . . . , ul ] = S(N̄ [u p, u p−1, . . . , ul ])
∏p

r=l N̄ r
ur∏p

s=l+1

√
(βus − αus−1 + 1)(βus − αus−1 )

,

where the difference βus − αus−1 in characteristic roots is given by Eq. (35), and the phase
S(N̄ [u p, u p−1, . . . , ul ]) is once again given in Eq. (36).

Once again, we remind the reader of the Remarks given at the end of Sec. VI. In particular,
any pattern not satisfying the branching rules of Theorem 9 after a shift in labels is identically zero,
and hence so is the corresponding matrix element. In the above results, the patterns to which this
comment pertains are of the form

|λq,s + �r,p〉, |λq,s + �u p,p + . . . + �ul ,l〉, |λq,s − �r,p〉 and |λq,s − �u p,p − . . . − �ul ,l〉.

VIII. EXAMPLE: MATRIX ELEMENTS OF THE gl(2|2) RAISING GENERATORS

As an explicit example, we calculate the action (and hence matrix elements) of each raising
generator of gl(2|2) on a GT basis vector in an arbitrary irreducible type 1 unitary module with
highest weight (λ14, λ24 | λ1̄4, λ2̄4).

In what follows, we remind the reader of the convention in place that if a vector with shifted labels
is no longer a genuine GT pattern satisfying the branching rules of Theorem 9, then it is identically
zero, regardless of how the expressions for the coefficients turn out. Hence the corresponding matrix
element would also be identically zero in such a case.

A. Elementary generators Ei,i + 1

E1,2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 1

1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠ ,
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where

N 1
1 = √(λ1,2 − λ1,1)(λ1,1 − λ2,2 + 1).

E2,3

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 2

1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 2
2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1

⎞
⎟⎟⎟⎟⎠ ,

where

N 2
1 =

√
(λ1̄,3 + λ1,3 + 1)(λ1,1 − λ1,3)(

λ2,3 − λ1,3 − 1
) ,

N 2
2 =

√
(λ1̄,3 + λ2,3)(λ1,1 − λ2,3 + 1)(

λ1,3 − λ2,3 + 1
) .

E3,4

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 3

1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 + 1 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3
2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 + 1 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3
3

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3 + 1

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ ,

where

N 3
1 =

√
(λ2,3 − λ1,3 − 2)(λ2,3 − λ1,3 − 1)(λ1̄,4 + λ1,3 + 2)(λ2̄,4 + λ1,3 + 1)

(λ2,2 − λ1,3 − 1)(λ2,4 − λ1,3 − 2)(λ1̄,3 + λ1,3 + 2)(λ1̄,3 + λ1,3 + 1)
,

N 3
2 =

√
(λ1,3 − λ2,3)(λ1,3 − λ2,3 + 1)(−λ1̄,4 − λ2,3 − 1)(−λ2̄,4 − λ2,3)

(λ1,2 − λ2,3 + 1)(λ1,4 − λ2,3)(−λ1̄,3 − λ2,3 − 1)(−λ1̄,3 − λ2,3)
,

N 3
3 =

√
(λ1,3 + λ1̄,3 + 1)(λ1,3 + λ1̄,3 + 2)(λ2,3 + λ1̄,3)(λ2,3 + λ1̄,3 + 1)(λ1̄,4 − λ1̄,3)(λ2̄,4 − λ1̄,3 − 1)

(λ1,2 + λ1̄,3 + 2)(λ1,4 + λ1̄,3 + 1)(λ2,2 + λ1̄,3 + 1)(λ2,4 + λ1̄,3)
.
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B. Non-elementary generators

E1,3

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 2 1

1 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 2 1
2 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠ ,

where

N 2 1
1 1 = N 1

1 N 2
1

√
(λ1,1 − λ1,2 + 1)−1(λ1,1 − λ1,2)−1

=
√

(λ1,1 − λ2,2 + 1)(λ1̄,3 + λ1,3 + 1)(λ1,1 − λ1,3)

(λ2,3 − λ1,3 − 1)(λ1,1 − λ1,2 + 1)

and

N 2 1
2 1 = −N 1

1 N 2
2

√
(λ1,1 − λ2,2 + 1)−1(λ1,1 − λ2,2)−1

= −
√

(λ1,2 − λ1,1)(λ1̄,3 + λ2,3)(λ1,1 − λ2,3 + 1)(
λ1,3 − λ2,3 + 1

)
(λ1,1 − λ2,2)

.

E2,4

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 3 2

1 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 + 1 λ2,3 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3 2
2 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 + 1 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3 2
3 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3 + 1

λ1,2 + 1 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠
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+ N 3 2
1 2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 + 1 λ2,3 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3 2
2 2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 + 1 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1

⎞
⎟⎟⎟⎟⎠

+ N 3 2
3 2

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3 + 1

λ1,2 λ2,2 + 1

λ1,1

⎞
⎟⎟⎟⎟⎠ ,

where

N 3 2
1 1 = N 2

1 N 3
1

=
√

(λ1,1 − λ1,3)(λ2,3 − λ1,3)(λ1̄,4 + λ1,3 + 1)(λ2̄,4 + λ1,3)

(λ2,2 − λ1,3)(λ2,4 − λ1,3 − 1)(λ1̄,3 + λ1,3)
,

N 3 2
2 1 = N 2

1 N 3
2

√
(λ1,2 − λ2,3 + 2)−1(λ1,2 − λ2,3 + 1)−1

=
√

(λ1̄,3 + λ1,3 + 1)(λ1,3 − λ1,1)(λ1,3 − λ2,3)(λ1̄,4 + λ2,3 + 1)(λ2̄,4 + λ2,3)

(λ1,2 − λ2,3 + 1)(λ1,4 − λ2,3)(λ1̄,3 + λ2,3 + 1)(λ1̄,3 + λ2,3)(λ1,2 − λ2,3 + 2)(λ1,2 − λ2,3 + 1)
,

N 3 2
3 1 = N 2

1 N 3
3

√
(λ1,2 − λ1̄,3 + 3)−1(λ1,2 − λ1̄,3 + 2)−1

=
√

(λ1̄,3 + λ1,3 + 1)2(λ1,1 − λ1,3)(λ1,3 + λ1̄,3 + 2)(λ2,3 + λ1̄,3)(λ2,3 + λ1̄,3 + 1)(
λ2,3 − λ1,3 − 1

)
(λ1,2 + λ1̄,3 + 2)(λ1,4 + λ1̄,3 + 1)(λ2,2 + λ1̄,3 + 1)(λ2,4 + λ1̄,3)

×
√

(−λ1̄,4 + λ1̄,3)(−λ2̄,4 + λ1̄,3 + 1)

(λ1,2 − λ1̄,3 + 3)(λ1,2 − λ1̄,3 + 2)
,

N 3 2
1 2 = −N 2

2 N 3
1

√
(λ2,2 − λ1,3)−1(λ2,2 − λ1,3 − 1)−1

= −
√

(λ1̄,3 + λ2,3)(λ1,1 − λ2,3 + 1)(λ1,3 − λ2,3)(λ1̄,4 + λ1,3 + 1)(λ2̄,4 + λ1,3)

(λ2,2 − λ1,3)2(λ2,4 − λ1,3 − 1)(λ1̄,3 + λ1,3 + 1)(λ1̄,3 + λ1,3)(λ2,2 − λ1,3 − 1)
,

N 3 2
2 2 = N 2

2 N 3
2

=
√

(λ1,1 − λ2,3 + 1)(λ1,3 − λ2,3)(λ1̄,4 + λ2,3 + 1)(λ2̄,4 + λ2,3)

(λ1,2 − λ2,3 + 1)(λ1,4 − λ2,3)(λ1̄,3 + λ2,3 + 1)
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and

N 3 2
3 2 = N 2

2 N 3
3

√
(λ2,2 − λ1̄,3 + 2)−1(λ2,2 − λ1̄,3 + 1)−1

=
√

(λ1̄,3 + λ2,3)2(λ1,1 − λ2,3 + 1)(λ1,3 + λ1̄,3 + 1)(λ1,3 + λ1̄,3 + 2)(λ2,3 + λ1̄,3 + 1)(
λ1,3 − λ2,3 + 1

)
(λ1,2 + λ1̄,3 + 2)(λ1,4 + λ1̄,3 + 1)(λ2,2 + λ1̄,3 + 1)(λ2,4 + λ1̄,3)

×
√

(λ1̄,4 − λ1̄,3)(λ2̄,4 − λ1̄,3 − 1)

(λ2,2 − λ1̄,3 + 2)(λ2,2 − λ1̄,3 + 1)
.

E1,4

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3

λ1,2 λ2,2

λ1,1

⎞
⎟⎟⎟⎟⎠ = N 3 2 1

1 1 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 + 1 λ2,3 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 3 2 1
2 1 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 + 1 λ1̄,3

λ1,2 + 1 λ2,2

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 3 2 1
3 1 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3 + 1

λ1,2 + 1 λ2,2

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 3 2 1
1 2 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 + 1 λ2,3 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 3 2 1
2 2 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 + 1 λ1̄,3

λ1,2 λ2,2 + 1

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠

+ N 3 2 1
3 2 1

∣∣∣∣∣∣∣∣∣∣

λ1,4 λ2,4 λ1̄,4 λ2̄,4

λ1,3 λ2,3 λ1̄,3 + 1

λ1,2 λ2,2 + 1

λ1,1 + 1

⎞
⎟⎟⎟⎟⎠ ,

where

N 3 2 1
1 1 1 = N 1

1 N 2
1 N 3

1

√
(λ1,1 − λ1,2 − 1)−1(λ1,1 − λ1,2)−1

=
√

(λ1,1 − λ2,2 + 1)(λ1,1 − λ1,3)(λ2,3 − λ1,3 − 2)(λ1̄,4 + λ1,3 + 2)(λ2̄,4 + λ1,3 + 1)

(λ2,2 − λ1,3 − 1)(λ1,3 − λ2,4 + 2)(λ1̄,3 + λ1,3 + 2)(λ1,1 − λ1,2 − 1)
,
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N 3 2 1
2 1 1 = N 1

1 N 2
1 N 3

2

√
(λ1,1 − λ1,2 − 1)−1(λ1,1 − λ1,2)−1

√
(λ1,2 − λ2,3)−1(λ1,2 − λ2,3 − 1)−1

=
√

(λ1,1 − λ2,2 + 1)(λ1̄,3 + λ1,3 + 1)(λ1,1 − λ1,3)(λ1,3 − λ2,3)

(λ1,2 − λ2,3 + 1)(λ1,4 − λ2,3)(λ1̄,3 + λ2,3 + 1)(λ1̄,3 + λ2,3)(λ1,1 − λ1,2 − 1)

×
√

(λ1̄,4 + λ2,3 + 1)(λ2̄,4 + λ2,3)

(λ1,2 − λ2,3)(λ1,2 − λ2,3 − 1)
,

N 3 2 1
3 1 1 = N 1

1 N 2
1 N 3

3

√
(λ1,1 − λ1,2 − 1)−1(λ1,1 − λ1,2)−1

√
(λ1,2 + λ1̄,3 + 3)−1(λ1,2 + λ1̄,3 + 2)−1

=
√

(λ1,1 − λ2,2 + 1)(λ1̄,3 + λ1,3 + 1)2(λ1,3 − λ1,1)(λ1,3 + λ1̄,3 + 2)(λ2,3 + λ1̄,3)(
λ2,3 − λ1,3 − 1

)
(λ1,2 + λ1̄,3 + 2)(λ1,4 + λ1̄,3 + 1)(λ2,2 + λ1̄,3 + 1)(λ2,4 + λ1̄,3)

×
√

(λ2,3 + λ1̄,3 + 1)(λ1̄,3 − λ1̄,4)(λ2̄,4 − λ1̄,3 − 1)

(λ1,1 − λ1,2 − 1)(λ1,2 + λ1̄,3 + 3)(λ1,2 + λ1̄,3 + 2)
,

N 3 2 1
1 2 1 = N 1

1 N 2
2 N 3

1

√
(λ1,1 − λ2,2)−1(λ1,1 − λ2,2 + 1)−1

√
(λ2,2 + λ1̄,3 + 3)−1(λ2,2 + λ1̄,3 + 2)−1

=
√

(λ1,2 − λ1,1)(λ1̄,3 + λ2,3)(λ1,1 − λ2,3 + 1)(λ2,3 − λ1,3 − 2)(
λ1,3 − λ2,3 + 1

)
(λ2,2 − λ1,3 − 1)(λ2,4 − λ1,3 − 2)(λ1̄,3 + λ1,3 + 2)

×
√

(λ2,3 − λ1,3 − 1)(λ1̄,4 + λ1,3 + 2)(λ2̄,4 + λ1,3 + 1)

(λ1̄,3 + λ1,3 + 1)(λ1,1 − λ2,2)(λ2,2 + λ1̄,3 + 3)(λ2,2 + λ1̄,3 + 2)
,

N 3 2 1
2 2 1 = −N 1

1 N 2
2 N 3

2

√
(λ1,1 − λ2,2)−1(λ1,1 − λ2,2 + 1)−1

= −
√

(λ1,2 − λ1,1)(λ1,1 − λ2,3 + 1)(λ1,3 − λ2,3)(λ1,3 − λ2,3 + 1)(λ1̄,4 + λ2,3 + 1)(λ2̄,4 + λ2,3)(
λ1,3 − λ2,3 + 1

)
(λ1,2 − λ2,3 + 1)(λ1,4 − λ2,3)(λ1̄,3 + λ2,3 + 1)(λ1,1 − λ2,2)

and

N 3 2 1
3 2 1 = −N 1

1 N 2
2 N 3

3

√
(λ1,1 − λ2,2)−1(λ1,1 − λ2,2 + 1)−1

√
(λ2,2 + λ1̄,3 + 2)−1(λ2,2 + λ1̄,3 + 1)−1

= −
√

(λ1,2 − λ1,1)(λ1,3 + λ1̄,3 + 1)(λ1,3 + λ1̄,3 + 2)(λ2,3 + λ1̄,3)(λ2,3 + λ1̄,3 + 1)

(λ1,2 + λ1̄,3 + 2)(λ1,4 + λ1̄,3 + 1)(λ2,2 + λ1̄,3 + 1)(λ2,4 + λ1̄,3)

×
√

(λ1̄,3 + λ2,3)(λ1,1 − λ2,3 + 1)(λ1̄,4 − λ1̄,3)(λ2̄,4 − λ1̄,3 − 1)(
λ1,3 − λ2,3 + 1

)
(λ1,1 − λ2,2)(λ2,2 + λ1̄,3 + 2)(λ2,2 + λ1̄,3 + 1)

.

IX. CONCLUDING REMARKS

In this article, we have presented matrix element formulae for type 1 unitary irreducible repre-
sentations of the Lie superalgebra gl(m|n). We make use of classification results originally presented
in the work of Gould and Zhang1, 2 (summarised in Sec. III) and also rely on the branching rules
presented in Sec. V.

Regarding the branching rules, some readers already familiar with similar results on the elemen-
tary generators from the works of Palev16, 17 and Stoilova and Van der Jeugt18 may find our branching
rules appear too simplistic at first glance. One observation is that many of the representations may
have a highest weight with non-trivial component ωδ (in the sense of Theorem 6, see Sec. IV for
details). Since ωδ is the highest weight of a one-dimensional representation, it will have no effect on
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the form of the branching rule. In other words, to determine the branching rule of a given irreducible
unitary type 1 gl(m|n) representation with highest weight � = �0 + γ ε + ωδ, it may be easier to
do so by first finding the branching rule of the shifted highest weight �0 + γ ε. Indeed, a highest
weight of this form will either be a covariant tensor representation (the branching rule of which is
covered in Ref. 18), and if not, it will be essentially typical (in fact typical and non-tensorial), and
hence the branching rules in Refs. 17 and 33 are relevant. Importantly, the branching rules of these
articles coincide with our branching rules of Theorem 9.

The general procedure to find matrices of generators of gl(m|n + 1) (including non-elementary
ones) corresponding to a type 1 unitary irreducible highest weight representation is:

1. Determine the branching rules all the way down the subalgebra chain (14), using Theorem 9;
2. Express every basis vector as a GT pattern of the form (13);
3. Determine the matrix elements using the formulae presented in Sec. VII.

From the duality discussed in Sec. III, the dual of a type 1 unitary irreducible representation that
is tensorial will be an irreducible type 2 unitary representation that is also tensorial, but in a different
sense. In this case, the type 2 unitary representations which are tensorial are those that occur in the
tensor product of a number of copies of the dual vector representation. Matrix element formulae
and related concepts associated with the type 2 unitary irreducible representations will be discussed
in detail in a forthcoming article.
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APPENDIX A: BRANCHING RULE FOR KAC MODULES

Let L̂ = gl(m|n + 1), with Z-gradation

L̂ = L̂− ⊕ L̂0 ⊕ L̂+, L̂0 = gl(m) ⊕ gl(n + 1)

and set L = gl(m|n) ⊂ L̂, with Z-gradation

L = L− ⊕ L0 ⊕ L+, L0 = gl(m) ⊕ gl(n) ⊕ gl(1).

Now given a finite dimensional L̂-module V̂ , we have the q-character

chq V̂ =
∑

ν

mνqν,

where the sum is over the distinct weights ν in V̂ each occurring with multiplicity mν .
Of particular interest here is the case of a Kac-Module

K̂ (�̂) = U (L̂) ⊗L̂+ V̂0(�̂)

with V̂0(�̂), �̂ = �̂(0) + �̂(1) ≡ (�̂(0)|�̂(1)), a finite dimensional irreducible L̂0-module with highest
weight �̂. Clearly in this case, we have

chq K̂ (�̂) = D̂q
1 chq V̂0(�̂), (A1)

where chq V̂0(�̂) is the usual q-character of the irreducible L̂0-module Û0(�̂) and D̂q
1 is the odd

“denominator” function

D̂q
1 =

∏
β∈�̂+

1

(1 + q−β )

with �̂+
1 the set of odd positive roots of L̂ .

We have a partition

�̂+
1 = �+

1 ∪ �+
1
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with �+
1 the odd positive roots of gl(m|n) and

�+
1 = {εi − δm+n+1 | 1 ≤ i ≤ m}.

With this notation, we may write

D̂q
1 = Dq

1 Eq
1

with Dq
1 the corresponding denominator polynomial for L = gl(m|n) and

Eq
1 =

∏
β∈�+

1

(1 + q−β ).

Now using the usual Gelfand-Tsetlin L̂0 ↓ L0 branching rules, we have the following decom-
position into irreducible L0-modules:

V̂0(�̂(0)|�̂(1)) =
⊕
�(1)

V̂0(�̂(0)|�(1)),

where the sum is over all L0-highest weights �(1) subject to the usual betweenness conditions

�̂(1)
μ ≥ �(1)

μ ≥ �̂
(1)
μ+1, 1 ≤ μ ≤ n.

This immediately gives

chq K̂ (�̂) = D̂q
1

∑
�(1)

chq V0(�̂(0)|�(1))

= Dq
1

∑
�(1)

Eq
1 chq V0(�̂(0)|�(1)). (A2)

Now observe that

Eq
1 chq V (�̂(0)|�(1)) =

∑
�(0)

chq V (�(0)|�(1)),

where the sum is over all gl(m) dominant weights �(0) such that

�̂
(0)
i ≥ �

(0)
i ≥ �̂

(0)
i − 1.

Substituting into Eq. (A2), we arrive at

chq K̂ (�̂) = Dq
1

∑
�

chq V0(�),

where the sum is over all L0 highest weights � = (�(0)|�(1)) subject to the conditions

�̂
(0)
i ≥ �

(0)
i ≥ �̂

(0)
i − 1, 1 ≤ i ≤ m, (A3)

�̂(1)
μ ≥ �(1)

μ ≥ �̂(1)
μ , 1 ≤ μ ≤ n. (A4)

These are precisely the branching conditions presented in our previous paper.4

In terms of Kac-modules, let

K (�) = U (L−) ⊗L+ V0(�)

be a corresponding Kac-module for L = gl(m|n). Then the above shows that

chq K̂ (�̂) =
∑
�

chq K (�), (A5)

i.e., the branching condition of our previous paper4 coincides precisely with the decomposition of
Kac-modules in the above sense.
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In the case of an essentially typical irreducible L̂-module V̂ (�̂), we have

V̂ (�̂) = K̂ (�̂)

=
⊕

�

V (�),

where the sum is over all � subject to the betweenness conditions (A3) and (A4) of our previous
paper.

Remark: We emphasize that Eq. (A5) holds for general dominant �̂.

APPENDIX B: PHASE CONVENTION

In this appendix, we derive the phase of the matrix elements of the generators Ep,p + 2 and then
extend this result to matrix elements of all generators Ep,p + q.

The simple generators Ep,p + 1 acting on a GT pattern |�〉 (� the highest weight of a type 1
unitary representation for gl(m|n + 1)) will produce

E p,p+1|�〉 =
p∑

a=1

N p
a |� + εa,p〉,

where |� + εa,p〉 is the GT pattern |�〉 but with the ath label of the pth row shifted by + 1.
Consequently, non-zero matrix elements of the simple generators will be of the form

〈� + εa,p|E p,p+1|�〉 = +N p
a [�], (B1)

where we have set N p
a to be positive by the Condon-Shortly convention. Non-zero matrix elements

of non-simple generators Ep,p + 2 are given by

N p p+1
a b = 〈� + εa,p + εb,p+1|E p,p+2|�〉 = 〈� + εa,p + εb,p+1|[E p,p+1, E p+1,p+2]|�〉

= 〈� + εa,p + εb,p+1|E p,p+1|� + εb,p+1〉〈� + εb,p+1|E p+1,p+2|�〉

− 〈� + εa,p + εb,p+1|E p+1,p+2|� + εa,p〉〈� + εa,p|E p,p+1|�〉.

Using (B1), the above equation can be written as

N p p+1
a b = N p

a [� + εb,p+1]N p+1
b [�] − N p+1

b [� + εa,p]N p
a [�],

where all of the matrix elements on the RHS are positive due to the Baird-Beidenharn convention.
From our previous results4

δ̄a = (−1)|I
′| ∏

b∈I ′,b 	=a

(
ᾱb − ᾱa + (−1)(b)

)−1 ∏
c∈ Ĩ ′

(
ᾱa − β̄c

)
, a ∈ I,

and

c̄a =
∏

k∈ Ĩ ′,k 	=a

(
β̄a − β̄k

)−1 ∏
r∈I ′

(
β̄a − ᾱr − (−1)(r )

)
, a ∈ Ĩ ′.
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So for odd a and odd b

N p p+1
a b [�] = N p

a [� + εb,p+1]N p+1
b [�] − N p+1

b [� + εa,p]N p
a [�]

= (δ̄a,pc̄a,p)1/2[� + εb,p+1]N p+1
b [�] − (δ̄b,p+1c̄b,p+1)1/2[� + εa,p]N p

a [�]

= (δ̄a,p)1/2[� + εb,p+1](c̄a,p)1/2[�]N p+1
b [�] − (c̄b,p+1)1/2[� + εa,p](δ̄b,p+1)1/2[�]N p

a [�]

=
√

ᾱa − β̄b − 1√
ᾱa − β̄b

(δ̄a,p)1/2(c̄a,p)1/2[�]N p+1
b [�] −

√
β̄b − ᾱa√

β̄b − ᾱa + 1
(c̄b,p+1)1/2(δ̄b,p+1)1/2[�]N p

a [�]

=
⎛
⎝
√

ᾱa − β̄b − 1

ᾱa − β̄b
−
√

ᾱa − β̄b

ᾱa − β̄b − 1

⎞
⎠ N p

a N p+1
b [�]

= −(ᾱa − β̄b − 1)−1/2(ᾱa − β̄b)−1/2 N p
a N p+1

b [�]

= (β̄b − ᾱa + 1)−1/2(β̄b − ᾱa)−1/2 N p
a N p+1

b [�],

which matches Eq. (32) for l = p − 1. Similarly, for the cases corresponding to the other three
parity combinations of a and b, we obtain the same result.

We observe that the sign of N p p+1
a b is directly given by the sign of β̄b − ᾱa . In fact, the sign

of N[up, up − 1, . . . , ul] is given by the multiplied signs of the ρ̄ terms in (31). Note that the above
derivation implies that the sign of (ρus ,us−1 )1/2 is given by taking the square root of (β̄us − ᾱus−1 + 1)
and (β̄us − ᾱus−1 ) individually.

We therefore have

S(N [u p, u p−1, . . . , ul]) =
p∏

s=l+1

S(ρ̄us ,us−1)

=
p∏

s=l+1

S(β̄us − ᾱus−1). (B2)

For (us) = 0, (us − 1) = 0,us 	= us − 1

S(β̄us − ᾱus−1 ) = S(�us−1 − �̃us + us − us−1)

= S(us − us−1).

For (us) = 1, (us − 1) = 1

S(β̄us − ᾱus−1 ) = S(�̃us − �us−1 + us−1 − us)

= S(us−1 − us).

For (us) = 1, (us − 1) = 0

S(β̄us − ᾱus−1 ) = S(β̄us − β̄us−1 − 1)

= S((� + ρ, εus−1 − δus )).

For � typical type 1 unitary, we have (� + ρ, εm − δn) > 0 which gives

(� + ρ, εus−1 − δus ) = (� + ρ, εm − δn) + (� + ρ, εus−1 − εm) + (� + ρ, δn − δus )

≥ (� + ρ, εm − δn) > 0.

For � atypical type 1 unitary, there exists an odd index 1 ≤ μ ≤ n such that (� + ρ, εm − δμ) =
0 and (�, δμ − δn) = 0. Since the labels �ν for μ ≤ ν ≤ n are all equal, only odd labels �us for us
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≤ μ may be raised. For this matrix element, we necessarily have us ≤ μ giving

(� + ρ, εus−1 − δus ) = (� + ρ, εm − δμ) + (� + ρ, εus−1 − εm) + (� + ρ, δμ − δus )

= (� + ρ, εus−1 − εm) + (� + ρ, δμ − δus ) ≥ 0,

which shows that for this case the matrix element is positive, i.e.,

S(β̄us − ᾱus−1) = 1, (us) = 1, (us−1) = 0,

and similarly

S(β̄us − ᾱus−1) = −1, (us) = 0, (us−1) = 1.

Combining the above four cases gives

S(β̄us − ᾱus−1 ) = (−1)(us−1)(us )S(us − us−1),

where, as usual, odd indices are considered greater than even indices. Finally, from Eq. (B2), we
have the result

S(N [u p, u p−1, . . . , ul ]) =
p∏

s=l+1

(−1)(us−1)(us )S(us − us−1).
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