4,251 research outputs found

    Theory of nuclear excitation by electron capture for heavy ions

    Full text link
    We investigate the resonant process of nuclear excitation by electron capture, in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy ion collision systems

    Extension of nano-confined DNA: quantitative comparison between experiment and theory

    Get PDF
    The extension of DNA confined to nanochannels has been studied intensively and in detail. Yet quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose we performed new experiments, measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic buffer strength. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths the agreement is less good. We discuss possible reasons. Our approach allows, in principle, to measure the Kuhn length and effective width of a single DNA molecule and more generally of semiflexible polymers in solution.Comment: Revised version, 6 pages, 2 figures, 1 table, supplementary materia

    Microwave photon-mediated interactions between semiconductor qubits

    Full text link
    The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interactions between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.Comment: 14 pages, 10 figures and 6 table

    Spitzer Observations of Spacecraft Target 162173 (1999 JU3)

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is the primary target of the Hayabusa-2 sample return mission, and a potential target of the Marco Polo sample return mission. Earth-based studies of this object are fundamental to these missions. We present a mid-infrared spectrum (5-38 microns) of 1999 JU3 obtained with NASA's Spitzer Space Telescope in May 2008. These observations place new constraints on the surface properties of this asteroid. To fit our spectrum we used the near-Earth asteroid thermal model (NEATM) and the more complex thermophysical model (TPM). However, the position of the spin-pole, which is uncertain, is a crucial input parameter for constraining the thermal inertia with the TPM; hence, we consider two pole orientations. In the extreme case of an equatorial retrograde geometry we derive a lower limit to the thermal inertia of 150 J/m^2/K/s^0.5. If we adopt the pole orientation of Abe et al. (2008a) our best-fit thermal model yields a value for the thermal inertia of 700+/-200 J/m^2/K/s^0.5 and even higher values are allowed by the uncertainty in the spectral shape due to the absolute flux calibration. The lower limit to the thermal inertia, which is unlikely but possible, would be consistent with a fine regolith similar to wthat is found for asteroid 433 Eros. However, the thermal inertia is expected to be higher, possibly similar to or greater than that on asteroid 25143 Itokawa. Accurately determining the spin-pole of asteroid 162173 will narrow the range of possible values for its thermal inertia.Comment: 4 pages, 2 figures; to be published as a Letter in Astronomy and Astrophysic

    Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study

    Full text link
    A popular concept which describes the structure of polymer interfaces by ``intrinsic profiles'' centered around a two dimensional surface, the ``local interface position'', is tested by extensive Monte Carlo simulations of interfaces between demixed homopolymer phases in symmetric binary (AB) homopolymer blends, using the bond fluctuation model. The simulations are done in an LxLxD geometry. The interface is forced to run parallel to the LxL planes by imposing periodic boundary conditions in these directions and fixed boundary conditions in the D direction, with one side favoring A and the other side favoring B. Intrinsic profiles are calculated as a function of the ``coarse graining length'' B by splitting the system into columns of size BxBxD and averaging in each column over profiles relative to the local interface position. The results are compared to predictions of the self-consistent field theory. It is shown that the coarse graining length can be chosen such that the interfacial width matches that of the self-consistent field profiles, and that for this choice of B the ``intrinsic'' profiles compare well with the theoretical predictions.Comment: to appear in Phys. Rev.

    H2CO and CH3OH maps of the Orion Bar photodissociation region

    Get PDF
    A previous analysis of methanol and formaldehyde towards the Orion Bar concluded that the two molecular species may trace different physical components, methanol the clumpy material, and formaldehyde the interclump medium. To verify this hypothesis, we performed multi-line mapping observations of the two molecules to study their spatial distributions. The observations were performed with the IRAM-30m telescope at 218 and 241 GHz, with an angular resolution of ~11''. Additional data for H2CO from the Plateau de Bure array are also discussed. The data were analysed using an LVG approach. Both molecules are detected in our single-dish data. Our data show that CH3OH peaks towards the clumps of the Bar, but its intensity decreases below the detection threshold in the interclump material. When averaging over a large region of the interclump medium, the strongest CH3OH line is detected with a peak intensity of ~0.06K. Formaldehyde also peaks on the clumps, but it is also detected in the interclump gas. We verified that the weak intensity of CH3OH in the interclump medium is not caused by the different excitation conditions of the interclump material, but reflects a decrease in the column density of methanol. The abundance of CH3OH relative to H2CO decreases by at least one order of magnitude from the dense clumps to the interclump medium.Comment: 11 pages, accepted for publication in A&

    Isolation and Characterization of Adhesive Secretion from Cuvierian Tubules of Sea Cucumber Holothuria forskåli (Echinodermata: Holothuroidea)

    Get PDF
    The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract

    International Union of Pharmacology. XLV. Classification of the Kinin Receptor Family: from Molecular Mechanisms to Pathophysiological Consequences

    Full text link
    Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development

    Polarized superfluid state in a three-dimensional fermionic optical lattice

    Full text link
    We study ultracold fermionic atoms trapped in a three dimensional optical lattice by combining the real-space dynamical mean-field approach with continuous-time quantum Monte Carlo simulations. For a spin-unpolarized system we show results the density and pair potential profile in the trap for a range of temperatures. We discuss how a polarized superfluid state is spatially realized in the spin-polarized system with harmonic confinement at low temperatures and present the local particle density, local magnetization, and pair potential.Comment: 6 pages, 2 figure
    corecore