2,716 research outputs found

    Accelerated return to sport after osteochondral autograft plug transfer

    Get PDF
    Background:Previous studies have reported varying return-to-sport protocols after knee cartilage restoration procedures.Purpose:To (1) evaluate the time for return to sport in athletes with an isolated chondral injury who underwent an accelerated return-to-sport protocol after osteochondral autograft plug transfer (OAT) and (2) evaluate clinical outcomes to assess for any consequences from the accelerated return to sport.Study Design:Case series; Level of evidence, 4.Methods:An institutional cohort of 152 OAT procedures was reviewed, of which 20 competitive athletes met inclusion and exclusion criteria. All patients underwent a physician-directed accelerated rehabilitation program after their procedure. Return to sport was determined for all athletes. Clinical outcomes were assessed using International Knee Documentation Committee (IKDC) and Tegner scores as well as assessment of level of participation on return to sport.Results:Return-to-sport data were available for all 20 athletes; 13 of 20 athletes (65%) were available for clinical evaluation at a mean 4.4-year follow-up. The mean time for return to sport for all 20 athletes was 82.9 ± 25 days (range, 38-134 days). All athletes were able to return to sport at their previous level and reported that they were satisfied or very satisfied with their surgical outcome and ability to return to sport. The mean postoperative IKDC score was 84.5 ± 9.5. The mean Tegner score prior to injury was 8.9 ± 1.7; it was 7.7 ± 1.9 at final follow-up.Conclusion:Competitive athletes with traumatic chondral defects treated with OAT managed using this protocol had reduced time to preinjury activity levels compared with what is currently reported, with excellent clinical outcomes and no serious long-term sequelae.</jats:sec

    A Computationally Efficient Method for Simulating Metal-Nanowire Dipole Antennas at Infrared and Longer Visible Wavelengths

    Get PDF
    This paper presents a numerically efficient approach for simulating nanowires at infrared and long optical wavelengths. A computationally efficient circuit-equivalent modeling approach based on the electric-field integral-equation (EFIE) formulation is employed to simulate the highly dispersive behavior of nanowires at short wavelengths. The proposed approach can be used both for frequency-domain and for time-domain EFIE formulations. In comparison with widely used full-wave solutions achieved through the finite-difference time-domain method, the circuit-based EFIE formulation results in a sharp reduction of the computational resources while retaining high accuracy.This work was supported in part by the Spanish Ministry of Education under Project PR2009-0443, in part by the Penn State MRSEC under NSF Grant 0213623, in part by the EU FP7/2007-2013 under Grant GA 205294 (HIRF SE project), in part by the Spanish National Projects TEC2010-20841- C04-04, CSD200800068, and DEX-5300002008105, and in part by the Junta de Andalucia Project P09-TIC5327

    An Investigation of School Socioeconomic Staus on adolescent Athletes\u27 Baseline and Post-Injury Concussion Assessments

    Get PDF
    Please enjoy Volume 5, Issue 1 of the JSMAHS. In this issue you will find Professional and under graduate research abstracts, case reports, and critically appraised topics. Thank you for viewing this 5th Annual OATA Special Editio

    Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {\it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 \um\ polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 \um\ luminosity which is only 0.004 \lstarf\ while the median BB-band luminosity is 0.05 \lstarb. Despite many of the galaxies being 8.0 \um\ deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] - [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] - [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 \um\ luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 \um\ emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 \um\ luminosity function and compare it with the one for the local galaxy population. Our results show that below 109^{9} LL\solar, nearly all the 8.0 \um\ luminosity density of the local universe arises from dwarf galaxies that exhibit strong \ha\ emission -- i.e., 8.0 \um\ and \ha\ selection identify similar galaxy populations despite the deficit of 8.0 \um\ emission observed in these dwarfs.Comment: 13 pages, 11 figures, Published in Ap

    Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization

    Get PDF
    The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform’s performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution

    Warm Molecular Hydrogen Emission in Normal Edge-On Galaxies NGC 4565 and NGC 5907

    Get PDF
    We have observed warm molecular hydrogen in two nearby edge-on disk galaxies, NGC 4565 and NGC 5907, using the Spitzer high-resolution infrared spectrograph. The 0-0 S(0) 28.2 micron and 0-0 S(1) 17.0 micron pure rotational lines were detected out to 10 kpc from the center of each galaxy on both sides of the major axis, and in NGC 4565 the S(0) line was detected at r = 15 kpc on one side. This location lies beyond a steep drop in the radio continuum emission from cosmic rays in the disk. Despite indications that star formation activity decreases with radius, the H2 excitation temperature and the ratio of the H2 line and the far-IR luminosity surface densities, Sigma_L(H2}/Sigma_L(TIR}, change very little as a function of radius, even into the diffuse outer region of the disk of NGC 4565. This suggests that the source of excitation of the H2 operates over a large range of radii, and is broadly independent of the strength and relative location of UV emission from young stars. Although excitation in photodissociation regions is the most common explanation for the widespread H2 emission, cosmic ray heating or shocks cannot be ruled out. The inferred mass surface densities of warm molecular hydrogen in both edge-on galaxies differ substantially, being 4(-60) M_solar/pc^2 and 3(-50) M_solar/pc^2 at r = 10 kpc for NGC 4565 and NGC 5907, respectively. The higher values represent very unlikely point-source upper limits. The point source case is not supported by the observed emission distribution in the spectral slits. These mass surface densities cannot support the observed rotation velocities in excess of 200 km/s. Therefore, warm molecular hydrogen cannot account for dark matter in these disk galaxies, contrary to what was implied by a previous ISO study of the nearby edge-on galaxy NGC 891.Comment: Accepted for publication in the Astronomical Journal (20 pages, 17 figures, 7 tables

    Studying the atmosphere of the exoplanet HAT-P-7b via secondary eclipse measurements with EPOXI, Spitzer and Kepler

    Full text link
    The highly irradiated transiting exoplanet, HAT-P-7b, currently provides one of the best opportunities for studying planetary emission in the optical and infrared wavelengths. We observe six near-consecutive secondary eclipses of HAT-P-7b at optical wavelengths with the EPOXI spacecraft. We place an upper limit on the relative eclipse depth of 0.055% (95% confidence). We also analyze Spitzer observations of the same target in the infrared, obtaining secondary eclipse depths of 0.098+/-0.017%, 0.159+/-0.022%, 0.245+/-0.031% and 0.225+/-0.052% in the 3.6, 4.5, 5.8 and 8.0 micron IRAC bands respectively. We combine these measurements with the recently published Kepler secondary eclipse measurement, and generate atmospheric models for the day-side of the planet that are consistent with both the optical and infrared measurements. The data are best fit by models with a temperature inversion, as expected from the high incident flux. The models predict a low optical albedo of ~< 0.13, with subsolar abundances of Na, K, TiO and VO. We also find that the best fitting models predict that 10% of the absorbed stellar flux is redistributed to the night side of the planet, which is qualitatively consistent with the inefficient day-night redistribution apparent in the Kepler phase curve. Models without thermal inversions fit the data only at the 1.25 sigma level, and also require an overabundance of methane, which is not expected in the very hot atmosphere of HAT-P-7b. We also analyze the eight transits of HAT-P-7b present in the EPOXI dataset and improve the constraints on the system parameters, finding a period of P = 2.2047308+/-0.0000025 days, a stellar radius of R* = 1.824+/-0.089Rsun, a planetary radius of Rp = 1.342+/-0.068RJup and an inclination of i = 85.7+3.5-2.2 deg.Comment: 21 pages, 8 figures, accepted by the Astrophysical Journa

    Greenhouse gas observation network design for Africa

    Get PDF
    An optimal network design was carried out to prioritise the installation or refurbishment of greenhouse gas (GHG) monitoring stations around Africa. The network was optimised to reduce the uncertainty in emissions across three of the most important GHGs: CO2, CH4, and N2O. Optimal networks were derived using incremental optimisation of the percentage uncertainty reduction achieved by a Gaussian Bayesian atmospheric inversion. The solution for CO2 was driven by seasonality in net primary productivity. The solution for N2O was driven by activity in a small number of soil flux hotspots. The optimal solution for CH4 was consistent over different seasons. All solutions for CO2 and N2O placed sites in central Africa at places such as Kisangani, Kinshasa and Bunia (Democratic Republic of Congo), Dundo and Lubango (Angola), Zoétélé (Cameroon), Am Timan (Chad), and En Nahud (Sudan). Many of these sites appeared in the CH4 solutions, but with a few sites in southern Africa as well, such as Amersfoort (South Africa). The multi-species optimal network design solutions tended to have sites more evenly spread-out, but concentrated the placement of new tall-tower stations in Africa between 10ºN and 25ºS. The uncertainty reduction achieved by the multi-species network of twelve stations reached 47.8% for CO2, 34.3% for CH4, and 32.5% for N2O. The gains in uncertainty reduction diminished as stations were added to the solution, with an expected maximum of less than 60%. A reduction in the absolute uncertainty in African GHG emissions requires these additional measurement stations, as well as additional constraint from an integrated GHG observatory and a reduction in uncertainty in the prior biogenic fluxes in tropical Africa

    Thermal Emission of WASP-14b Revealed with Three Spitzer Eclipses

    Get PDF
    Exoplanet WASP-14b is a highly irradiated, transiting hot Jupiter. Joshi et al. calculate an equilibrium temperature Teq of 1866 K for zero albedo and reemission from the entire planet, a mass of 7.3 +/- 0.5 Jupiter masses and a radius of 1.28 +/- 0.08 Jupiter radii. Its mean density of 4.6 g/cm3 is one of the highest known for planets with periods less than 3 days. We obtained three secondary eclipse light curves with the Spitzer Space Telescope. The eclipse depths from the best jointly fit model are 0.224%0.224\% +/- 0.018%0.018\% at 4.5 {\mu}m and 0.181%0.181\% +/- 0.022%0.022\% at 8.0 {\mu}m. The corresponding brightness temperatures are 2212 +/- 94 K and 1590 +/- 116 K. A slight ambiguity between systematic models suggests a conservative 3.6 {\mu}m eclipse depth of 0.19%0.19\% +/- 0.01%0.01\% and brightness temperature of 2242 +/- 55 K. Although extremely irradiated, WASP-14b does not show any distinct evidence of a thermal inversion. In addition, the present data nominally favor models with day night energy redistribution less than  30%~30\%. The current data are generally consistent with oxygen-rich as well as carbon-rich compositions, although an oxygen-rich composition provides a marginally better fit. We confirm a significant eccentricity of e = 0.087 +/- 0.002 and refine other orbital parameters.Comment: 16 pages, 16 figure
    corecore