2,372 research outputs found
A multi-wavelength study of the young star V1118 Orionis in outburst
Abriged version for astroph: The young late-type star V1118 Orionis was in
outburst from 2005 to 2006. We followed the outburst with optical and
near-infrared photometry; the X-ray emission was further probed with
observations taken with XMM-Newton and Chandra during and after the outburst.
In addition, we obtained mid-infrared photometry and spectroscopy with Spitzer
at the peak of the outburst and in the post-outburst phase. The spectral energy
distribution of V1118 Ori varied significantly over the course of the outburst.
The optical flux showed the largest variations, most likely due to enhanced
emission by a hot spot. The latter dominated the optical and near-infrared
emission at the peak of the outburst, while the disk emission dominated in the
mid-infrared. The X-ray flux correlated with the optical and infrared fluxes,
indicating that accretion affected the magnetically active corona and the
stellar magnetosphere. The thermal structure of the corona was variable with
some indication of a cooling of the coronal temperature in the early phase of
the outburst with a gradual return to normal values. Color-color diagrams in
the optical and infrared showed variations during the outburst, with no obvious
signature of reddening due to circumstellar matter. Using MC realizations of
star+disk+hotspot models to fit the SED in ``quiescence'' and at the peak of
the outburst, we determined that the mass accretion rate varied from about
2.5E-7 Msun/yr to 1E-6 Msun/yr; in addition the fractional area of the hotspot
increased significantly as well. The multi-wavelength study of the V1118 Ori
outburst helped us to understand the variations in spectral energy
distributions and demonstrated the interplay between the disk and the stellar
magnetosphere in a young, strongly accreting star.Comment: Accepted in A&A, Tables will be published onlin
Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon
Net proton and negative hadron spectra for central \PbPb collisions at 158
GeV per nucleon at the CERN SPS were measured and compared to spectra from
lighter systems. Net baryon distributions were derived from those of net
protons, utilizing model calculations of isospin contributions as well as data
and model calculations of strange baryon distributions. Stopping (rapidity
shift with respect to the beam) and mean transverse momentum \meanpt of net
baryons increase with system size. The rapidity density of negative hadrons
scales with the number of participant nucleons for nuclear collisions, whereas
their \meanpt is independent of system size. The \meanpt dependence upon
particle mass and system size is consistent with larger transverse flow
velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures.
Typos corrected, some paragraphs expanded in response to referee comments, to
better explain details of analysi
YSOVAR: Mid-infrared Variability Among YSOs in the Star Formation Region GGD 12-15
S. J. Wolk, et al., “YSOVAR: Mid-infrared Variability Among YSOs in the Star Formation Region GGD 12-15”, The Astronomical Journal, Vol. 150(5), October 2015. © 2015. The American Astronomical Society. All rights reserved.We present an IR-monitoring survey with the Space Telescope of the star forming region GGD 12-15. Over 1000 objects were monitored including about 350 objects within the central 5 arcminutes which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability (YSOVAR) project. The region was also the subject of a contemporaneous 67ks observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5 arcminutes are young stellar objects based on a combination of their spectral energy distribution, IR variability and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-IR variability. There are 39 periodic sources, all but one of these is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded young stellar objects. Most of the Class~I/II objects exhibit redder colors in a fainter state, compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR lightcurves. However, we find that X-ray detected Class II sources have longer timescales for change in the mid-IR than a similar set of non-X-ray detected Class IIs.Peer reviewe
YSOVAR: mid-infrared variability of young stellar objects and their disks in the cluster IRAS 20050+2720
K. Poppenhaeger, et al., “YSOVAR: mid-infrared variability of young stellar objects and their disks in the cluster IRAS 20050+2720”, The Astronomical Journal, Vol. 150(4), September 2015. © 2015. The American Astronomical Society. All rights reserved.We present a time-variability study of young stellar objects in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 micron with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability project (YSOVAR). We have collected light curves for 181 cluster members over 40 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability time scales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer time scales than the X-ray undetected members.Peer reviewe
Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease
Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors
YSOVAR: Mid-Infrared Variability in NGC 1333
L. M. Rebull, “YSOVAR: Mid-Infrared Variability in NGC 1333”, The Astronomical Journal, Vol. 150(6), November 2015. © 2015. The American Astronomical Society. All rights reserved. Available online at: https://doi.org/10.1088/0004-6256/150/6/175As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5 um using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10x~20arcmin area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded SEDs (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2 mag; a more typical amplitude is 0.1-0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be 'dippers', where texture in the disk occults the central star, and 11 likely to be 'bursters', where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).Peer reviewe
- …