394 research outputs found

    Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave

    Get PDF
    Extreme climatic events are predicted to increase in severity as a consequence of anthropogenic climate change. In marine ecosystems, the importance of marine heatwaves (MHWs)—discrete periods of anomalously high sea temperatures—is gaining recognition. In 2011, the highest-magnitude MHW ever recorded impacted the west coast of Australia (southeast Indian Ocean). The MHW was associated with widespread mortality of habitat-forming species, including corals and kelps, and structural changes in assemblages of macroalgae and fish. However, the responses of benthic macroinvertebrate assemblages have not yet been fully documented. Here, we resurveyed 2 subtidal habitat types (reef ‘flats’ and ‘slopes’) at 4 locations (spanning >800 km of coastline and >6° of latitude) during the period 1999-2015 to examine the effects of the 2011 MHW on herbivorous macroinvertebrates (i.e. sea urchins, gastropod molluscs). Responses to the MHW varied with latitude; at our warmest study location, abundances were severely depleted, whereas no effects were detected at the coolest location. Across the entire study region, subtle but significant shifts in assemblage structure were observed due to decreased abundances of more southerly-distributed species (i.e. ‘cool’ affinity) and increased abundances of several more northerly-distributed species (i.e. ‘warm’ affinity). The 2011 MHW has had profound effects on the marine biota off the west coast of Australia, across multiple trophic levels and taxonomic groups. Here, as in many other regions, contemporary warming events are superimposed onto gradual warming trends, increasing the likelihood of abrupt changes in ecosystem structure and functioning

    Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems.

    Get PDF
    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates

    Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate

    Get PDF
    Assessing effects of herbivory across broad gradients of varying ocean climate conditions and over small spatial scales is crucial for understand- ing its influence on primary producers. Effects of her- bivory on the distribution and abundance of kelp re- cruits were examined experimentally at two regions under contrasting ocean climate. Specifically, the abundance and survivorship of kelp recruits and the abundance of macro-herbivores were compared be- tween a ‘cool’ and a ‘warm’ region in northern and central Portugal, respectively. In each region, the abundance of kelp recruits and the intensity of grazing were compared between habitats of different topography within reefs (open reef vs. crevices). Com- pared to the ‘warm’ region, the abundance of kelp re- cruits was 3.9 times greater in the ‘cool’ region, where 85% of recruits were found in open reef habitats. In contrast, 87% of recruits in the ‘warm’ region were re- stricted to crevices. The ‘warm’ region had 140 times greater abundances of sea urchins, 45 times more herbivorous fish and 4.1 times more grazing marks on kelp recruits than the ‘cool’ region. Grazing assays showed ca. 50 times higher rates of kelp biomass con- sumption, mainly by fishes, and zero survivorship of kelp recruits in the ‘warm’ relative to the ‘cool’ region. This study suggests both temperature and herbivores affect abundances of kelp recruits across latitudes, and demonstrates how herbivores affect their distri- bution at local scales, driving kelp recruits into ‘hiding’ in crevices under intense herbivory. Conse- quently, where net recruitment success is compro- mised by herbivory, the persistence of kelps will be contingent on availability of topographical refuges

    Kelp forest restoration in Australia

    Get PDF
    Kelp forests dominate the rocky coasts of temperate Australia and are the foundation of the Great Southern Reef. Much like terrestrial forests, these marine forests create complex habitat for diverse communities of flora and fauna. Kelp forests also support coastal food-webs and valuable fisheries and provide a suite of additional ecosystem services. In many regions of Australia and around the world, kelp forests are in decline due to ocean warming, overgrazing, and pollution. One potential tool in the conservation and management of these important ecosystems is habitat restoration, the science and practice of which is currently undergoing substantial expansion. We summarize the present state of Australian kelp forests and emphasize that consideration of the initial drivers of kelp decline is a critical first step in restoration. With a focus on Australian examples, we review methods, implementation and outcomes of kelp forest restoration, and discuss suitable measures of success and the estimated costs of restoration activities. We propose a workflow and decision system for kelp forest restoration that identifies alternative pathways for implementation and acknowledges that under some circumstances restoration at scale is not possible or feasible. As a case study, we then apply the Society for Ecological Restoration’s 5-star evaluation to Operation Crayweed, Australia’s primary example of kelp forest restoration. Overall, no single method of kelp forest restoration is suitable for all situations, but outcomes can be optimized by ameliorating the driver(s) of kelp decline and achieving ongoing natural recruitment of kelp. Whilst scalability of kelp forest restoration to the seascape-scale remains a considerable challenge, the present review should provide a platform for future restoration efforts. However, it is also crucial to emphasize that the challenges of restoration place a high value on preventative conservation and protection of existing kelp forest ecosystems – prevention is invariably better than cure

    Forecast ocean variability

    Get PDF

    Resistance, Extinction and Everything in Between - The Diverse Responses of Seaweeds to Marine Heatwaves

    Get PDF
    Globally, anomalously warm temperature events have increased by 34% in frequency and 17% in duration from 1925 to 2016 with potentially major impacts on coastal ecosystems. These “marine heatwaves” (MHWs) have been linked to changes in primary productivity, community composition and biogeography of seaweeds, which often control ecosystem function and services. Here we journalarticle the literature on seaweed responses to MHWs, including 58 observations related to resistance, bleaching, changes in abundance, species invasions and local to regional extinctions. More records existed for canopy-forming kelps and bladed and filamentous turf-forming seaweeds than for canopy-forming fucoids, geniculate coralline turf and crustose coralline algae. Turf-forming seaweeds, especially invasive seaweeds, generally increased in abundance after a MHW, whereas native canopy-forming kelps and fucoids typically declined in abundance. We also found four examples of regional extinctions of kelp and fucoids following specific MHWs, events that likely have long term consequences for ecological structure and functioning. Although a relatively small number of studies have described impacts of MHWs on seaweed, the broad range of documented responses highlights the necessity of better baseline information regarding seaweed distributions and performance, and the need to study specific characteristics of MHWs that affect the vulnerability and resilience of seaweeds to these increasingly important climatic perturbations. A major challenge will be to disentangle impacts caused by the extreme temperature increases of MHWs itself from co-occurring potential stressors including altered current patterns, increasing herbivory, changes in water clarity and nutrient content, solar radiation and desiccation stress in the intertidal zone. With future increases anticipated in the intensity, duration and frequencies of MHWs, we expect to see more replacements of large long-lived habitat forming seaweeds with smaller ephemeral seaweeds, reducing the habitat structure and effective services seaweed-dominated reefs can provide

    Genomic consequences and selection efficacy in sympatric sexual versus asexual kelps

    Get PDF
    Genetic diversity can influence resilience and adaptative capacity of organisms to environmental change. Genetic diversity within populations is largely structured by reproduction, with the prevalence of asexual versus sexual reproduction often underpinning important diversity metrics that determine selection efficacy. Asexual or clonal reproduction is expected to reduce genotypic diversity and slow down adaptation through reduced selection efficacy, yet the evolutionary consequences of clonal reproduction remain unclear for many natural populations. Here, we examine the genomic consequences of sympatric sexual (haplodiplontic) and clonal morphs of the kelp Ecklonia radiata that occur interspersed on reefs in Hamelin Bay, Western Australia. Using genome-wide single nucleotide polymorphisms, we confirm significant asexual reproduction for the clonal populations, indicated by a significantly lower number of multi-locus lineages and higher intra-individual diversity patterns (individual multi-locus heterozygosity, MLH). Nevertheless, co-ancestry analysis and breeding experiments confirmed that sexual reproduction by the clonal morph and interbreeding between the two morphs is still possible, but varies among populations. One clonal population with long-term asexuality showed trends of decreased selection efficacy (increased ratio non- vs. synonymous gene diversities). Yet, all clonal populations showed distinct patterns of putative local adaptation relative to the sexual morph, possibly indicating maladaptation to local environmental conditions and high vulnerability of this unique clonal morph to environmental stress

    Climate-driven regime shift of a temperate marine ecosystem.

    Get PDF
    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests

    Biological Impacts of Marine Heatwaves

    Get PDF
    Climatic extremes are becoming increasingly common against a background trend of global warming. In the oceans, marine heatwaves (MHWs)—discrete periods of anomalously warm water—have intensified and become more frequent over the past century, impacting the integrity of marine ecosystems globally. We review and synthesize current understanding of MHW impacts at the individual, population, and community levels. We then examine how these impacts affect broader ecosystem services and discuss the current state of research on biological impacts of MHWs. Finally, we explore current and emergent approaches to predicting the occurrence andimpacts of future events, along with adaptation and management approaches. With further increases in intensity and frequency projected for coming decades, MHWs are emerging as pervasive stressors to marine ecosystems globally. A deeper mechanistic understanding of their biological impacts is needed to better predict and adapt to increased MHW activity in the Anthropocene.publishedVersio
    • 

    corecore