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ABSTRACT: Extreme climatic events are predicted to increase in severity as a consequence 1 

of anthropogenic climate change. In marine ecosystems, the importance of marine heatwaves 2 

(MHWs) – discrete periods of anomalously high sea temperatures - is gaining recognition. In 3 

2011, the highest-magnitude MHW ever recorded impacted the west coast of Australia 4 

(southeast Indian Ocean). The MHW was associated with widespread mortality of habitat-5 

forming species, including corals and kelps, and structural changes in assemblages of 6 

macroalgae and fish. However, the responses of benthic macroinvertebrate assemblages have 7 

not yet been fully documented. Here, we resurveyed 2 subtidal habitat types (reef ‘flats’ and 8 

‘slopes’) at 4 locations (spanning >800 km of coastline and >6° of latitude) during the period 9 

1999-2015 to examine the impacts of the 2011 MHW on herbivorous macroinvertebrates (i.e. 10 

sea urchins, gastropod molluscs). Responses to the MHW varied with latitude; at our warmest 11 

study location abundances were severely depleted whereas no effects were detected at the 12 

coolest location. Across the entire study region subtle but significant shifts in assemblage 13 

structure were observed due to decreased abundances of more southerly-distributed species 14 

(i.e. ‘cool’ affinity) and increased abundances of several more northerly-distributed species 15 

(i.e. ‘warm’ affinity). The 2011 MHW has had profound effects on the marine biota off the 16 

west coast of Australia, across multiple trophic levels and taxonomic groups. Here, as in many 17 

other regions, contemporary warming events are superimposed onto gradual warming trends, 18 

increasing the likelihood of abrupt changes in ecosystem structure and functioning. 19 

KEY WORDS:  Benthic herbivores; Extreme climatic events; Leeuwin Current; Mobile 20 

macro-invertebrates; Southeast Indian Ocean; Southwest Australia; Species distributions; 21 

Temperature variability 22 

  23 
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INTRODUCTION 1 

Climatic variability, including the frequency and magnitude of extreme climatic events, is 2 

predicted to increase as a direct consequence of anthropogenic climate change (Meehl & 3 

Tebaldi 2004, Rahmstorf & Coumou 2011, IPCC 2012). Natural climate variability is now 4 

superimposed onto decadal warming trends in most regions, increasing the likelihood of 5 

discrete climatic events becoming ‘extreme’ or ‘anomalous' (Hansen et al. 2012, Trenberth 6 

2012). Such events, which include heatwaves, droughts, storms and floods, can affect both 7 

terrestrial and marine ecosystems and cause high mortality (Garrabou et al. 2009, Marba & 8 

Duarte 2010) deleterious impacts on populations (Van De Pol et al. 2010, Smale & Wernberg 9 

2013) and a reconfiguration of communities (Thibault & Brown 2008, Wernberg et al. 2013, 10 

Wernberg et al. 2016).  11 

Marine heatwaves (MHWs) are broadly defined as discrete prolonged periods when sea 12 

temperatures are anomalously high relative to long-term records (Hobday et al. 2016). MHWs, 13 

which can be caused by a range of oceanographic and atmospheric processes, are gaining 14 

recognition as widespread and potent drivers of change in marine ecosystems (Wernberg et al. 15 

2013, Hobday et al. 2016). Indeed, the number of days of anomalously high seawater 16 

temperatures has significantly increased along 30% of the world’s coastlines in the last 30 years 17 

(Lima & Wethey 2012), while several ‘high profile’ warming events have had far-reaching 18 

ecological impacts (Hobday et al. 2016). For example, the European meteorological heatwaves 19 

of 2003 and 2006 elevated seawater temperatures in the Mediterranean Sea, which in turn 20 

caused widespread mortality, shifts in species’ distributions and declines in local marine 21 

biodiversity (Garrabou et al. 2009, Lejeusne et al. 2009, Marba & Duarte 2010). More recently, 22 

the El Niño-driven warming event of 2015-2016 has devastated coral reefs at a global scale 23 

(Normile 2016). It is clear that prolonged periods of extremely high seawater temperatures 24 
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affect processes across all biological scales, from genes (Bergmann et al. 2010) to organisms 1 

(Diaz-Almela et al. 2007) to ecosystems (Wernberg et al. 2016). 2 

In the austral summer of 2010/2011, the southeast Indian Ocean experienced an extreme 3 

warming event, during which seawater temperatures were the highest on record (~30 years for 4 

satellite-derived SSTs and ~140 years for reconstructed SSTs, see Wernberg et al. 2013). 5 

During the MHW, warming anomalies of 2-4°C persisted for around two months across >2000 6 

km of temperate and subtropical coastline (Feng et al. 2013, Pearce & Feng 2013, Wernberg et 7 

al. 2013). At the MHW’s peak in late February/March 2011, warming anomalies of up to 5°C 8 

were observed at multiple coastal locations (Rose et al. 2012, Feng et al. 2013, Pearce & Feng 9 

2013). The MHW was associated with unusually strong La Niña conditions, which increased 10 

the flow of the region's main ocean current (the Leeuwin Current, ‘LC’) and the transfer of 11 

tropical warm water polewards, and was superimposed onto a decadal scale warming trend in 12 

the southeast Indian Ocean (Pearce & Feng 2007).  13 

The MHW had wide-ranging consequences for marine ecosystems along the western coastline 14 

of Australia, which is a global hotspot of marine diversity and endemism (Tittensor et al. 2010, 15 

Bennett et al. 2015a). Unprecedented rates of coral bleaching and mortality were recorded 16 

across >1000 km of tropical and subtropical coastline (Moore et al. 2012, Depczynski et al. 17 

2013), including at high latitude locations that are historically resistant to bleaching events 18 

(Smale & Wernberg 2012). Significant declines in the abundance and geographical extent of 19 

habitat-forming macroalgae were observed (Smale & Wernberg 2013, Wernberg et al. 2013, 20 

Wernberg et al. 2016), as were changes in fish abundances and species composition (Wernberg 21 

et al. 2013, Bennett et al. 2015b, Wernberg et al. 2016) and mass mortalities of commercially-22 

important finfish and shellfish (Pearce et al. 2011, Caputi et al. 2016). ‘Warm-temperate’ 23 

locations situated within the tropical-temperate transition zone were profoundly impacted, as 24 

they suffered widespread loss of cool-water adapted habitat-forming species (kelps and large 25 
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fucoids), which were unable to cope with the extreme temperatures experienced during the 1 

MHW (Smale & Wernberg 2013, Wernberg et al. 2013, Wernberg et al. 2016).  2 

Mobile macroinvertebrates such as echinoderms and molluscs play key roles in the trophic 3 

ecology of temperate Australia (Shepherd & Edgar 2013), yet the impact of the 2011 MHW on 4 

their distributions and abundances has not yet been analysed in detail. Within the current 5 

biogeographical context of southwestern Australia, mobile macro-invertebrates are fairly low 6 

in diversity and abundance compared with many other temperate and polar ecosystems, and 7 

exhibit highly patchy spatial distributions (Vanderklift & Kendrick 2004, Wernberg et al. 2008, 8 

Levitus et al. 2012, Azzarello et al. 2014, Smale & Wernberg 2014). Despite their relatively 9 

low diversity and abundances, and an apparent lack of grazing ‘fronts’ and urchin ‘barrens’ in 10 

the region, densities can be locally high (>8 large inds.m-2, see Vanderklift & Kendrick 2004, 11 

Azzarello et al. 2014) and mobile macroinvertebrates represent a conspicuous and 12 

characteristic component of kelp forest communities (Vanderklift & Kendrick 2004, Wernberg 13 

et al. 2008, Azzarello et al. 2014). Moreover, key species of sea urchins and molluscs may play 14 

a critical role in the food web (Vanderklift et al. 2006, Lozano-Montes et al. 2011, MacArthur 15 

et al. 2011), linking primary productivity (e.g. drifting and attached macroalgae) to higher 16 

trophic levels (e.g. lobsters, finfish).    17 

Off southwest Australia, the reef-associated benthic macroinvertebrate fauna has a 18 

predominantly temperate affinity (Vanderklift & Kendrick 2004); the most abundant sea urchin 19 

in the region is the purple sea urchin Heliocidaris erythrogramma (Valenciennes 1846, 20 

hereafter ‘Heliocidaris’), which is widely distributed across southern Australia (Keesing 2001, 21 

Smale & Wernberg 2014). The sea urchin Phyllacanthus irregularis (Mortensen 1928, 22 

hereafter ‘Phyllacanthus’), and the large turbinid gastropod Lunella torquatus (Gmelin 1791, 23 

recently synonymised with Turbo torquatus, hereafter ‘Lunella’) are also common, widespread 24 

and have cool-temperate affinities. The sea urchin Centrostephanus tenuispinus (Clarke 1914, 25 
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hereafter ‘Centrostephanus’) has a warm-temperate distribution (Wernberg et al. 2016), while 1 

tropical warm-water species such as the sea urchin Tripneustes gratilla (Linneaus 1758, 2 

hereafter ‘Tripneustes’) and the cowry gastropod Monetaria caputserpentis have occasionally 3 

been recorded within kelp forest communities in southwestern Australia (authors pers. obs.). 4 

The broad-scale affinities and geographical distributions of common macroinvertebrates 5 

observed in previous surveys are shown in Table 1. As such, inter-specific variation in 6 

biogeographic and thermal affinities may make some populations more susceptible to 7 

temperature variability, such as that experienced during the 2011 MHW.  8 

Here, we conducted geographically extensive surveys and used historical data to test the 9 

following hypotheses (1) that the MHW significantly altered the structure of macroinvertebrate 10 

assemblages on subtidal reefs in southwest Australia. We also hypothesised (2) that the 11 

abundances of more southerly-distributed cool-temperate species would be lower after the 12 

MHW, especially at our warmest study locations where thermal physiological tolerances may 13 

have been exceeded.  Conversely, we predicted that (3) the abundances of more northerly-14 

distributed warm-temperate/tropical macroinvertebrates would be higher after the MHW, 15 

particularly at our warmest study locations situated within the tropical-temperate transition 16 

zone. 17 

MATERIALS AND METHODS 18 

 19 

Study region 20 

 21 

The extensive coastline of southwestern Australia is characterized by widespread subtidal 22 

rocky reef habitat that supports highly productive, diverse and spatially extensive benthic 23 

communities, which are generally dominated by the kelp Ecklonia radiata in shallow waters 24 

(i.e. <30 m depth). We examined the abundances of benthic macroinvertebrates on kelp-25 

dominated rocky reef habitats within 4 locations off southwest Australia; Hamelin Bay (34.2°S, 26 
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115.0°E), Marmion Lagoon (31.8°S, 115.7°E), Jurien Bay (30.2S, 115.0°E) and Kalbarri 1 

(27.4°S, 114.1°E). Adjacent locations were situated >200 km apart (Fig. 1) and the study 2 

encompassed ~6° latitude and ~800 km of southwest Australian coastline (southeast Indian 3 

Ocean). All locations were moderately exposed to the oceanic swell systems that influence the 4 

ecology and geomorphology of the region (Searle & Semeniuk 1985, Smale et al. 2011). The 5 

study locations encompassed a temperature gradient of ~3°C and fall within a larger regional-6 

scale oceanic temperature gradient that characterizes the west coast of Australia (Fig. 1). 7 

Average summer sea temperatures ranged from 20.3°C at Hamelin to 23.2°C at Kalbarri (see 8 

Smale & Wernberg 2009, for detailed climatology of the region). The coastline is strongly 9 

influenced by the LC which originates in the Indo-Pacific and flows polewards along the coast, 10 

before deviating eastwards into the Great Australian Bight (Pearce 1991, Smith et al. 1991). 11 

The LC transports tropical (and subtropical) dispersal stages of marine flora and fauna and 12 

warm, nutrient-poor water polewards (Ayvazian & Hyndes 1995, Caputi et al. 1996, Smale & 13 

Wernberg 2009).  14 

 15 

Field surveys 16 

For each location, existing data on the abundance of mobile invertebrates were collated from 17 

published studies (Vanderklift & Kendrick 2004, Wernberg et al. 2008) and from authors’ 18 

unpublished surveys that used identical survey methods. These studies were used to identify 19 

sites within each location that could be resurveyed to assess the impacts of the MHW. Multiple 20 

comparable study sites, >1 km apart from one another, were selected at random from a larger 21 

possible pool for resurveying. All study sites were characterised by extensive limestone reef 22 

habitats, at 6-16 m depth, and supported benthic assemblages typical of the wider region (Smale 23 

et al. 2010). Two habitat types were defined a priori; flat reef platforms (hereafter ‘flats’) and 24 

vertical or steeply-sloping rock faces (hereafter ‘slopes’). These habitat types were treated 25 
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separately because (i) they support distinct invertebrate assemblages (Vanderklift & Kendrick 1 

2004), and (ii) the quantity of available data and the most suitable study sites for resurveying 2 

differed between habitat types. For reef flats, 5 sites were selected from each of the 4 locations 3 

for resurveying, whereas reef slopes were resurveyed at 3 sites within 3 locations (existing data 4 

were not available for reef slopes at Kalbarri). Before the MHW, sites were surveyed between 5 

1 and 3 times between 1999 and 2006 (Table S1). After the MHW, new targeted surveys were 6 

conducted for the current study at all sites 3 times (in 2013, 2014 and 2015), with the exception 7 

of some sites at Hamelin which were not surveyed in 2014/2015 (Table S1).  All surveys were 8 

conducted during the austral summer (full details provided in Table S1). Previous research in 9 

the region has shown that short-term variability (i.e. seasons to years) in invertebrate 10 

assemblage structure is minimal and that densities of dominant macroinvertebrates are 11 

generally stable over periods of months to years (Vanderklift & Kendrick 2004, Smale & 12 

Wernberg 2014). For example, an examination of Heliocidaris abundances from 3 consecutive 13 

pre-MHW survey years (between 1999 and 2001) on reef slopes at Marmion indicated minimal 14 

inter-annual variability (Fig S1). There was no discernible intensification of localized 15 

anthropogenic stressors, such as increased pollution, sedimentation or harvesting, which may 16 

have confounded any effects of the MHW, at any of the locations during the study period. 17 

Human populations in nearby settlements are relatively small (with the exception of the Perth 18 

Metropolitan Area adjacent to our sites at Marmion, which fall within a designated Marine 19 

Park) and localized anthropogenic impacts that could potentially confound temperature effects 20 

were deemed to be minimal.  21 

All mobile macroinvertebrates (>20 mm) within 5 replicate 5 x 1 m belt transects were counted 22 

on SCUBA (by the authors) at each study site. Transects were positioned haphazardly and 23 

placed >5 m apart from one another. In total, counts were obtained from 685 transects (395 24 

completed before the MHW and 290 after the MHW) covering ~3425 m2 of subtidal reef 25 

habitat (~1975 m2 before the MHW and ~1450 m2 after the MHW).  26 
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Statistical analysis 1 

Differences in invertebrate assemblage structure between pre-MHW and post-MHW surveys 2 

was examined with permutational multivariate analysis of variance (PERMANOVA, see 3 

Anderson 2001), using PRIMER 6 software (Clarke & Warwick 2001) with the 4 

PERMANOVA add-on (Anderson et al. 2008). As macroinvertebrate abundance values per 5 

transect were often low, the five transects completed per site/year combination were first 6 

pooled (to generate abundance values per 25 m2) so that a single value was used for each site-7 

year combination. Initially a ‘global’ analysis was performed on data from all locations, using 8 

an orthogonal model with the two factors ‘location’ (fixed factor) and ‘MHW’ (fixed factor); 9 

each habitat type was analysed separately. Permutations were based on a similarity matrix 10 

generated from Bray-Curtis similarity matrix of square-root transformed pooled densities 11 

(4999 permutations under a reduced model). As highly-significant (P≤0.001) interactions 12 

between location and MHW were detected for both habitat types (Table S2, Fig. S2), separate 13 

a priori planned contrasts for each location were conducted to test the prediction that years 14 

following the MHW would be distinct from those before the MHW (using the same similarity 15 

matrix and data transformation as above, and 4999 unrestricted permutations). In all cases, 16 

dummy variables (equal to the lowest transformed abundance value; ‘1’) were included in the 17 

similarity matrices to alleviate the overpowering influence of transects with zero abundance 18 

values (Clarke & Warwick 2001). Where a significant difference was detected, a SIMPER 19 

analysis was performed to determine which taxa contributed most to the observed dissimilarity. 20 

PCO plots for each location and habitat type were constructed to examine multivariate 21 

partitioning before and after the MHW. 22 

Temporal trends in total abundance (TA), taxon richness (TR) and the abundances of dominant 23 

species were examined with univariate permutation-based ANOVA (Anderson et al. 2008), 24 

using the planned contrasts described above (all response variables exhibited a significant 25 
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Location x MHW interaction term in initial global analyses and so each location was analysed 1 

separately). Permutations were based on Euclidean distances between untransformed 2 

abundance data (using 4999 unrestricted permutations).   3 

RESULTS 4 

The marine heatwave of 2010/11 5 

At all locations temperature anomalies between +2°C to +3°C persisted for two months (Fig. 6 

1) and absolute sea surface temperatures in the region were the highest on record (Feng et al. 7 

2013, Pearce & Feng 2013, Wernberg et al. 2013). In addition to the extreme warming observed 8 

in 2010/2011, sea surface temperatures in early 2012 and (to a lesser extent) early 2013 were 9 

also higher than the climatological mean for each location (Fig. 1).    10 

Assemblage-level responses 11 

On reef flats, the composition of mobile invertebrate assemblages was not obviously impacted 12 

by the MHW at the coolest study locations (PCO plots showed no clear partitioning in 13 

composition before and after the MHW at Hamelin or Marmion: Fig. 2) but were clearly altered 14 

by the MHW at the warmest locations (partitioning was evident at Jurien and major shifts in 15 

composition occurred at Kalbarri: Fig. 2). Multivariate statistical tests supported inferences 16 

from visual inspections of PCO plots, as a priori planned contrasts indicated that pre- and post-17 

MHW assemblages at Jurien and Kalbarri were significantly different (Table S3). SIMPER 18 

analysis indicated that the observed dissimilarities at Jurien were principally related to lower 19 

post-MHW abundances of Heliocidaris and Lunella and higher abundances of 20 

Centrostephanus (Table S4). At Kalbarri, the gastropods Lunella, Dicathais orbita and 21 

Astralium spp., which were not recorded after the MHW, were the principal contributors to the 22 

observed dissimilarities between pre and post-MHW assemblages (Table S4).    23 
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On reef slopes, PCO plots indicated that assemblages at Hamelin showed no obvious 1 

differences in composition before and after the MHW, whereas partitioning between pre- and 2 

post-MHW assemblages was observed at Marmion and Jurien (Fig. 3). These observations 3 

were supported by PERMANOVA, as pre and post-MHW assemblages at Hamelin were 4 

statistically similar but significant differences in composition were observed at Marmion and 5 

Jurien (Table S5). SIMPER analysis indicated that differences at Marmion were related to 6 

higher post-MHW abundances of Heliocidaris and Centrostephanus and lower abundances of 7 

the sea star Petricia vernicina (Table S6). At Jurien, the sea urchins Centrostephanus, 8 

Tripneustes (both with higher abundances post-MHW) and Phyllacanthus (lower abundances 9 

post-MHW) were the principal contributors to the observed dissimilarities between pre and 10 

post-MHW assemblages (Table S6).    11 

On reef flats total abundance (TA) and taxon richness (TR) did not vary significantly between 12 

pre and post-MHW years at the 3 highest latitude locations (Hamelin, Marmion and Jurien, see 13 

Fig 4). At Kalbarri, however, TA and TR were significantly lower after the MHW (Table S7) 14 

to the extent that not a single macroinvertebrate individual was observed in any of the 75 post-15 

MHW transects (Fig. 4), which covered a habitat area of ~375 m2. On average at Kalbarri, TA 16 

decreased from 2.3 ± 0.8 to 0 inds.25 m-2 and TR decreased from 1.3 ± 0.3 to 0 spp.25 m-2 (Fig. 17 

4). On reef slopes, TA did not differ significantly before and after the MHW at any location 18 

but TR was significantly lower at Jurien after the MHW (Table S8), decreasing from 5.0 ± 0.6 19 

to 2.9 ± 0.3 spp.25 m-2 (Fig. 4). 20 

Population-level responses 21 

On reef flats, Heliocidaris was the most abundant macroinvertebrate, reaching a maximum 22 

average abundance of 8.8 ± 3.0 inds.25m-2 at Jurien (Fig. 5). The MHW had no statistically 23 

significant effect on Heliocidaris abundances at Hamelin, Marmion and Jurien, and it was not 24 

recorded at Kalbarri during any survey year (Fig. 5, Table S9). The two most common 25 
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gastropod taxa, Lunella and Astralium spp. (Astralium tentorium Thiele 1930 and Astralium 1 

squamiferum Koch 1844) were recorded at all locations before the MHW but were not recorded 2 

at the warmest location, Kalbarri, after the MHW (Fig. 5). This marked post-MHW decline 3 

was statistically significant for Lunella but not for Astralium (Fig. 5, Table S9).     4 

On reef slopes, Heliocidaris was again the most common macroinvertebrate and did not 5 

respond significantly to the MHW (Fig. 6, Table S10). At Jurien, the abundance of the pencil 6 

urchin Phyllacanthus was significantly lower after the MHW (Fig. 6, Table S10). The most 7 

striking observation was the marked increases in the abundance of Centrostephanus at both 8 

Marmion and Jurien (Fig. 6). Following the MHW, the average abundance of Centrostephanus 9 

was ~15 times higher at Jurien and also significantly higher at Marmion, increasing from 10 

complete absence in transects before the MHW to an average abundance of 1.9 ± 0.7 inds.25m2 11 

following the event (Fig. 6, Table S10). A marked but statistically non-significant increase in 12 

Centrostephanus abundance was also observed at Hamelin (Fig. 6, Table S10). The collector 13 

urchin Tripneustes was not recorded in any pre-MHW transect but was recorded at some sites 14 

at Jurien after the MHW, in 2013 and 2014 (Fig. 6). However, the planned contrast between 15 

pre- and post-MHW years was not statistically significant because of high variability between 16 

sites and years (Tripneustes was recorded at 2 sites in 2013, 1 site in 2014 and was absent in 17 

2015), indicating that patterns were variable between sites and years.  18 

Temporal shifts in the relative abundances of sea urchin species on reef slopes (i.e. the 19 

percentage of all sea urchin individuals represented by each species, with all 3 sites per location 20 

pooled) were also examined (Fig. 7). This analysis showed a consistent clear pattern of higher 21 

relative abundance of Centrostephanus since the MHW at all 3 study locations (Fig. 7). For 22 

example, at Jurien before the MHW Centrostephanus represented 3.5% of all sea urchins 23 

recorded, yet by 2015 (4 years after the MHW) Centrostephanus represented 90.1% of all sea 24 

urchin individuals. A similar trend was observed at Hamelin and Marmion (Fig. 7). 25 



13 
 

Furthermore, at Jurien the relative contributions of Heliocidaris and Phyllacanthus individuals 1 

to the sea urchin assemblage was markedly lower following the MHW, partly as a consequence 2 

of the higher abundances of Tripneustes (temporarily) and Centrostephanus (Fig. 7). The 3 

relative abundances of Heliocidaris and Phyllacanthus at the other study locations were more 4 

variable between years and showed no clear trend (Fig. 7).  5 

 6 

DICUSSSION 7 

 8 

The 2011 MHW was extreme in terms of magnitude, duration and spatial extent (Feng et al. 9 

2013, Wernberg et al. 2013). Our data unequivocally demonstrate that the MHW significantly 10 

altered the composition of benthic macroinvertebrate assemblages on subtidal reefs in 11 

southwest Australia, with the magnitude of impact inversely related to latitude (i.e. the warmest 12 

locations were the hardest hit). At the coolest study location, Hamelin, the composition of 13 

invertebrate assemblages on reef flats and slopes did not differ between pre and post-MHW 14 

years. At the mid-latitude locations, Marmion and Jurien, changes in the relative abundances 15 

of macroinvertebrate taxa led to significant alterations in species composition (on reef slopes 16 

at Marmion and on both habitat types at Jurien), whereas major shifts in species composition 17 

were observed at the lowest latitude location, Kalbarri. This aligns with the responses of fish 18 

and macroalgae assemblages (Wernberg et al. 2013), which were impacted by the MHW at a 19 

‘warm’ location (Jurien) but not at a ‘cool’ location (Hamelin). These data support our first 20 

hypothesis, that macroinvertebrate assemblage structure in southwest Australia was altered by 21 

the 2011 MHW, although responses varied considerably between locations. 22 

 23 

The most striking observation of the current study was the decimation of all benthic 24 

macroinvertebrates at Kalbarri, which were completely absent after the MHW. The most 25 

common mobile invertebrates at Kalbarri before the MHW were all large gastropods (the 26 

turban shells Lunella and Astralium spp. and the carnivorous muricid Dicathais orbita Gmelin 27 
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1791) which, although not abundant, were commonly recorded before the MHW, being 1 

ubiquitous in all surveys prior to 2011. These species exhibit temperate distributions spanning 2 

southern Australia, having likely evolved under cool, climatically-stable Tethyan conditions 3 

(Williams 2007). Kalbarri is situated towards the equatorward limit of these species’ 4 

distributions and, although thermal tolerances for these species are unknown, it is very likely 5 

that extreme temperatures experienced during the MHW had direct adverse physiological 6 

effects and induced high mortality rates. During the MHW, there was 99% mortality of the 7 

commercially-important gastropod Halliotis roei (Gray 1826, ‘Roe’s abalone’) on inshore reefs 8 

at Kalbarri, which represents the equatorward limit of this species’ distribution (Caputi et al. 9 

2016). The mass die-offs at Kalbarri were associated with 30°C temperatures, discoloured 10 

water and (probably) depleted oxygen levels (Pearce et al. 2011), and deleterious impacts of 11 

warming on H. roei  populations further south in the Perth Metropolitan Area (i.e. near 12 

Marmion) were also observed (Caputi et al. 2016). Lunella also decreased in abundance after 13 

the MHW at Marmion and Jurien (although not significantly), providing further support for the 14 

susceptibility of range edge populations to extreme warming.    15 

 16 

In addition to direct thermal stress, it is possible that the indirect effects of loss of habitat and 17 

food also affected invertebrate populations at Kalbarri and, to a lesser extent, Jurien. The MHW 18 

had direct adverse effects on habitat-forming seaweeds such as the dominant kelp Ecklonia 19 

radiata, which resulted in a 30-40% decline in total canopy cover in Jurien (Wernberg et al. 20 

2013) and the extirpation of the large fucoid Scytothalia dorycarpa at its range edge (Smale & 21 

Wernberg 2013). At Kalbarri, habitat structure was dramatically impacted by the MHW, as the 22 

spatial coverage of the canopy-forming kelp Ecklonia radiata decreased from ~75% of the 23 

reef’s surface (Wernberg et al. 2010) to complete absence after the MHW (Wernberg et al. 24 

2016). It has been shown that Lunella has a high affinity with kelp cover, and that sharp 25 

declines in Lunella abundance are associated with loss of kelp during ENSO events on the East 26 
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coast of Australia (Ettinger-Epstein & Kingsford 2008). Although Lunella and Astralium spp. 1 

do not primarily feed on kelp, preferring to consume filamentous or foliose algae (Ettinger-2 

Epstein & Kingsford 2008, Wernberg et al. 2008), canopy-forming macroalgae represent a 3 

critical resource through shelter provision (Ettinger-Epstein & Kingsford 2008). As such, loss 4 

of structural habitat may have indirectly impacted gastropod abundance, as loss of macroalgal 5 

shelter can induce behavioural responses and increase vulnerability of invertebrates to 6 

predators (Ettinger-Epstein & Kingsford 2008, Stoner 2009). Moreover, drifting kelp 7 

fragments are an important food source for benthic macroinvertebrates in the region 8 

(Vanderklift & Wernberg 2010), so a decline in food availability may have affected the 9 

ecological performance of individuals and the structure of populations.  10 

 11 

The post-MHW surveys were conducted 2-4 years after the 2011 event, with invertebrate 12 

populations at Kalbarri showing no signs of recovery following apparent widespread mortality. 13 

This is unsurprising, as recovery of the gastropod populations formerly recorded at Kalbarri 14 

will likely be hampered for 2 reasons; (1) the larval duration for some of these species is 15 

presumed to be fairly short (i.e. days to weeks)  (Phillips 1969, Joll 1980), so that post-MHW 16 

recovery will depend on proximity to source populations, and (2) source populations are likely 17 

to be located at higher latitudes, downstream of the main poleward-flowing ocean current, 18 

thereby reducing the likelihood of larval transport into impacted locations (Caputi et al. 1996). 19 

As Kalbarri is situated towards the equatorward distribution limits for these cool-water species, 20 

it is possible that the MHW has induced poleward range contractions (as with a temperate 21 

seaweed, see Smale & Wernberg 2013, Wernberg et al. 2016), although additional surveys are 22 

needed to confirm species’ range shifts. In addition to gastropods at Kalbarri, abundances of 23 

the pencil urchin Phyllacanthus were markedly lower on reef slope habitats at Jurien after the 24 

MHW, which was a major contributor to the observed dissimilarity between pre and post-25 

MHW assemblages. Phyllacanthus has a cool-water temperate distribution with its 26 



16 
 

equatorward range edge estimated at the Abrolhos Islands, ~28.5°S (Marsh 1994). As such, its 1 

absence at Kalbarri and post-MHW decline at Jurien may be related to recent warming, but 2 

thermal tolerance experiments are needed to examine this further. However, we observed no 3 

clear trend in the abundance of Heliocidaris, which has a similar temperate distribution to 4 

Phyllacanthus, therefore indicating inter-specific variability in responses to the MHW (as has 5 

been shown for seaweed and fish, see Wernberg et al. 2013). In summary, our second 6 

hypothesis, which predicted lower post-MHW abundances of more southerly distributed cool-7 

water species, was partially supported as cool-water species at Kalbarri were decimated by the 8 

MHW and some, but not all, cool water species exhibited a response at Jurien.  9 

 10 

Our third hypothesis – that the relative abundance of more northerly distributed ‘warm-water’ 11 

taxa would increase after the MHW – received some support as the abundance of Tripneustes 12 

notably increased at some sites at Jurien for the years immediately following the MHW. 13 

Tripneustes is a warm-water ‘collector urchin’ that is widely distributed across the Indo-Pacific 14 

and extended tropics, where it primarily feeds on drifting seagrass and macroalgae fragments 15 

but can actively graze when per capita food supply is insufficient (Ogden et al. 1989, Valentine 16 

& Edgar 2010). Tripneustes is notoriously ‘boom and bust’ and intense population  outbreaks 17 

have been observed in the temperate-tropical transition zone in eastern Australia, with 18 

community-level consequences (Valentine & Edgar 2010). Tripneustes is common in 19 

subtropical waters off Western Australia and, although it has occasionally been recorded 20 

further poleward than Jurien (e.g. at Rottnest Island, Vanderklift personal observation), it was 21 

extremely rare at all study locations and was not recorded in any transects completed before 22 

the MHW. We suggest that the higher abundances of Tripneustes at Jurien in 2013 and 2014 23 

was a consequence of the MHW for the following reasons: (1) the enhanced poleward flow of 24 

the LC during the MHW would have increased larval supply into cooler locations (Feng et al. 25 

2013, Wernberg et al. 2013); (2) temperatures experienced during the MHW in the Jurien Bay 26 
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region (i.e. 26-27°C, see Wernberg et al. 2013) would have been favourable for the 1 

development of Tripneustes larvae (Sheppard Brennand et al. 2010); (3) Tripneustes larvae are 2 

relatively long-lived and are generally released in the austral summer (Dworjanyn & Pirozzi 3 

2008), which was co-incident with the MHW and the unusually early strengthening of the LC 4 

(Pearce & Feng, 2013); and (4) the cohort of sea urchins observed in 2013 were similar in size  5 

(test diameters of ~10-12 cm, Smale pers. obs), which according to growth rate estimates 6 

(Bacolod & Dy 1986) would have coincided with a recruitment event during or soon after the 7 

MHW. However, as no Tripneustes individuals were recorded in 2015 the proliferation of the 8 

warmer-water species was short-lived, with no indication that the population at Jurien will 9 

persist.  10 

 11 

The hypothesis received limited support as there was no evidence of a proliferation of warm-12 

affinity macroinvertebrates at the northernmost location (Kalbarri), where reef habitats were 13 

devoid of benthic macrofauna. On the other hand, the principal ‘winner’ of the ecological 14 

disturbance was Centrostephanus, which increased in abundance by a factor of ~15 at Jurien 15 

to outnumber Heliocidaris to become the most abundant sea urchin, and significantly increased 16 

in abundance at Marmion following the MHW. Centrostephanus can be described as a ‘warm-17 

temperate’ species and its proliferation does therefore provide some support for the third 18 

hypothesis. Although Centrostephanus exhibits a temperate distribution from South Australia 19 

to mid-Western Australia, it is far more abundant towards the warm northern limit of its 20 

distribution compared with the cooler southern parts of its range (Vanderklift & Kendrick 2004, 21 

Wernberg et al. 2016). For example, an unpublished survey based on 90 habitat-scale transects 22 

conducted across 18 similar reefs between South Australia (Adelaide) and Marmion in 2005/06 23 

did not find a single Centrostephanus individual on these southern reefs (T. Wernberg 24 

unpublished data). Moreover, its equatorward range edge extends further north than the other 25 
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sea urchin species (except Tripneustes), with the northernmost population recorded at ~25°S 1 

(Marsh 1994, GBIF record 137025088).  2 

 3 

Very little is known about the biology of Centrostephanus tenuispinus, but its warm-temperate 4 

congener on the east coast of Australia, Centrostephanus rodgersii, has been extensively 5 

studied in recent years (see Byrne & Andrew 2013 for review). C. rodgersii has recently 6 

extended its range polewards into Tasmania, in response to increased temperature and a 7 

strengthening of the East Australian Current, where it has overgrazed kelp forest habitat to 8 

create widespread urchin barrens (Ling et al. 2008, Ling et al. 2009). C. rodgersii has long-9 

lived planktonic larvae that facilitates long distance dispersal (Byrne & Andrew 2013); it is 10 

likely that C. tenuispinus also has the potential for widespread dispersal. Increasing abundance 11 

of C. tenuispinus along the southwest coastline of Australia is congruent with the recent MHW 12 

and the longer-term gradual warming trend in the region (Pearce & Feng 2007). Thermal 13 

tolerance studies on C. rodgersii and Heliocidaris on the east coast of Australia would suggest 14 

that their thermal windows for fertilisation, development, growth and survival do not differ 15 

markedly (Byrne et al. 2010, Wolfe et al. 2013, Pecorino et al. 2014). As such, it is currently 16 

unclear whether recent warming has directly (through physiological stress) or indirectly 17 

(through temperature-mediated competitive interactions) favoured C. tenuispinus over 18 

Heliocidaris in southwest Australia, and focussed experimental work is needed.  It is also not 19 

known whether C. tenuispinus on the west coast has the potential to modify kelp forest habitat 20 

to the extent of its congener on the east coast of Australia. 21 

 22 

In conclusion, the 2011 MHW has had profound effects on the marine biota along the southwest 23 

coastline of Australia. Rapid changes in the abundance, distribution and condition of organisms 24 

representing a wide range of taxonomic and trophic groups have been reported (Pearce et al. 25 

2011, Moore et al. 2012, Smale & Wernberg 2012, Smale & Wernberg 2013, Wernberg et al. 26 
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2013, Caputi et al. 2016, Wernberg et al. 2016). This study has shown that the responses of 1 

mobile macroinvertebrates assemblages to the warming event varied dramatically with latitude, 2 

with greatest impact at the northernmost study locations, even though the magnitude of the 3 

warming anomaly was consistent along the latitudinal gradient. Recent modelling approaches 4 

based on species distributions and projected temperatures suggest that species’ range 5 

expansions will be more prevalent than range contractions under climate change scenarios 6 

(García Molinos et al. 2016). However, in this ‘extreme’ example of warming, we primarily 7 

observed loss of cooler-water macroinvertebrate species and less evidence for an influx or 8 

proliferation of warmer-water species over the timescale of observation. In contrast, observed 9 

responses of other taxonomic groups to MHWs, including seaweeds, fish and corals, have 10 

included a proliferation of warm-water species (Wernberg et al. 2013, Wernberg et al. 2016). 11 

Clearly, better understanding of variability between biogeographic regions and taxonomic 12 

groups is needed to improve predictions the effects of climate change on marine ecosystems.    13 

Coastal marine ecosystems along the vast and varied coastline of temperate Australia have 14 

responded to longer-term gradual ocean warming and concurrent stressors in complex and 15 

unpredictable ways (Wernberg et al. 2011). As short-term climatic variability is superimposed 16 

onto longer-term gradual warming trends in southwest Australia as in many other regions 17 

around the world, absolute temperatures may now reach unprecedented highs during extreme 18 

climatic events (Trenberth 2012). This will increase the likelihood of ecological tipping points 19 

being exceeded, triggering rapid phase-shifts in some regions and habitats (Wernberg et al. 20 

2016). Only time will tell, but the 2011 MHW may well have triggered rapid ‘tropicalization’ 21 

(see Vergés et al. 2014) along much of the coastline, by driving widespread loss of temperate 22 

flora and fauna and creating opportunities for rapid colonisation by a warm-water biota. 23 

Moreover, inter-specific variability in susceptibility and responses to warming trends and 24 

events, as shown here, will cause a reshuffling of species and the emergence of novel 25 

communities and ecosystems. 26 
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Table 1. Most common macroinvertebrate species recorded during surveys and their 1 

affinities and broad-scale distributions within the southwest Australian study region. The 2 

proportion of distribution records found either north or south of Jurien Bay (30.3˚S) is 3 

provided as an indication of the biogeographical affinities of each species (records were 4 

downloaded from The Atlas of Living Australia - http://www.ala.org.au - on 30/01/2017). 5 

Additional general information sourced from Edgar (1997). #Indicates few existing records 6 

for that species and as such distributions should be treated with caution, but wider affinity 7 

determined from best available knowledge.  8 

  9 

Species Taxa Affinity and distribution 

Centrostephanus 

tenuispinus 

Sea 

urchin 

Warm; warm-temperate, northern range-limit at Shark Bay (25.3 ˚S). 
#28.3% of 11 records north of 30.3˚S. Family characteristic of tropical 

reefs  

Tripneustes 

gratilla 

Sea 

urchin 

Warm; tropical, northern Australia, 68.8% of 288 records north of 

30.3˚S 

Phyllacanthus 

irregularis 

Sea 

urchin 

Cool; temperate, #70% of 20 records south of 30.3˚S 

Heliocidaris 

erythrogramma 

Sea 

urchin 

Cool; temperate, 92.3% of 607 records south of 30.3˚S. 

Lunella 

torquatus 

Gastropod 

mollusc 

Cool; temperate, 87.4% of 372 records south of 30.3˚S 

Astralium spp. 

(A. tentorium/ A. 

squamiferum) 

Gastropod 

mollusc 

Cool; temperate, 94.9% of 431 records south of 30.3˚S 

Dicathais orbita Gastropod 

mollusc 

Cool; temperate, 90.9% of 2242 records south of 30.3˚S 

Petricia 

vernicina 

Sea star Cool; temperate, 97.0% of 755 records south of 30.3˚S 

 10 
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Figure legends 1 

 2 

Fig 1. Map of southwest Australia indicating the Kalbarri (K), Jurien Bay (J), Marmion Lagoon 3 

(M) and Hamelin Bay (H) study locations. The region is characterized by a well-defined 4 

oceanic temperature gradient, represented here by average winter isotherms (in °C, 2005–07). 5 

Temperature anomalies represent deviations from monthly long-term means (1981-2010), 6 

derived from remotely-sensed satellite SSTs.  7 

Fig. 2. PCO plots showing macroinvertebrate assemblage structure on reef flats before and 8 

after the MHW at each location. Ordinations are based on Bray-Curtis similarities of square-9 

root transformed abundance data. Dashed circle in Kalbarri plot indicates 16 overlapping 10 

samples (15 samples post-MHW and 1 sample pre-MHW) in which macroinvertebrates were 11 

absent.   12 

Fig. 3. PCO plots showing macroinvertebrate assemblage structure on reef slopes before and 13 

after the MHW at each location. Ordinations are based on Bray-Curtis similarities of square-14 

root transformed abundance data. 15 

Fig. 4. Mean total abundance (left-hand plots) and taxon richness (right-hand plots) of all 16 

mobile macroinvertebrates on reef flats and slopes at each location before (blue bars) and after 17 

(red bars) the MHW (± SE). Values represent number of individuals/species per 25 m2 sample 18 

area (i.e. 5 transects pooled per site). Significant differences before and after the MHW are 19 

indicated with an asterisk (at P>0.05, test results shown in Tables S6 and S7).  20 

Fig. 5. Mean abundances (± SE) of dominant species on reef flats before (blue bars) and after 21 

(red bars) the MHW. Significant differences before and after the MHW are indicated with an 22 

asterisk (at P>0.05, test results shown in Table S8). 23 
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Fig. 6. Mean abundances (± SE) of dominant species on reef slopes before (blue bars) and after 1 

(red bars) the MHW. Significant differences before and after the MHW are indicated with an 2 

asterisk (at P>0.05, test results shown in Table S9) 3 

Fig. 7. The relative abundances of sea urchins recorded on reef slopes during each survey year 4 

at each location (average of 3 sites per location). The timing of the MHW is also shown.  5 
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Fig. 3   4 



36 
 

 1 

 2 

 3 

Fig. 4 4 

  5 



37 
 

 1 

 2 

 3 

Fig. 5 4 

  5 



38 
 

 1 

 2 

 3 
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