1,687 research outputs found

    Periodic bursts of Star Formation in Irregular Galaxies

    Get PDF
    We present N-body/SPH simulations of the evolution of an isolated dwarf galaxy including a detailed model for the ISM, star formation and stellar feedback. Depending on the strength of the feedback, the modelled dwarf galaxy shows periodic or quasi-periodic bursts of star formation of moderate strength. The period of the variations is related to the dynamical timescale, of the order of 1.5 1081.5~10^8 yr. We show that the results of these simulations are in good agreement with recent detailed observations of dwarf irregulars (dIrr) and that the peculiar kinematic and morphological properties of these objects,as revealed by high resolution HI studies, are fully reproduced. We discuss these results in the context of recent surveys of dwarf galaxies and point out that if the star formation pattern of our model galaxy is typical for dwarf irregulars this could explain the scatter of observed properties of dwarf galaxies. Specifically, we show that the time sampled distribution of the ratio between the instanteneous star formation rate (SFR) and the mean SFR is similar to that distribution in observed sample of dwarf galaxies.Comment: 11 pages, 6 figures, accepted for A&

    Landscape epidemiology of an insect-vectored plant-pathogenic bacterium : Candidatus Liberibacter solanacearum in carrots in Finland

    Get PDF
    Crop diseases may be affected by landscape composition, but limited quantitative information is available. We studied the effects of landscape factors on the incidence of the psyllid-transmitted bacterium Candidatus Lib-eribacter solanacearum (CLso) haplotype C in carrots in Finland. Samples were collected from 104 carrot fields in 2013 and 2014. The relationship between CLso incidence and landscape data was analysed using logistic regression. The probability of CLso infection significantly increased with increasing area of carrot cultivation, up to a 10 km radius. Spruce biomass (spruce is the winter shelter of the main vector, Trioza apicalis,) within 200 m distance from the field edges affected CLso infection in landscapes with a low to medium area proportion of carrot cultivation but not in landscapes with a high proportion of carrot fields. Disease incidence was higher on clay soils than on mineral soils. The findings illustrate the importance of movement of the vector between carrot and spruce and highlight this disease as a landscape-scale disease syndrome, which needs to be managed also at the landscape level. Moderating the proportion of carrot fields in a carrot production landscape could be a key to manage the disease by breaking the epidemic cycle at the landscape level.Peer reviewe

    Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003-2006

    Get PDF
    Formaldehyde columns retrieved from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography/Chemistry (SCIAMACHY) instrument onboard ENVISAT satellite through 2003 to 2006 are used as top-down constraints to derive updated global biogenic and biomass burning flux estimates for the non-methane volatile organic compounds (NMVOCs) precursors of formaldehyde. Our interest is centered over regions experiencing strong emissions, and hence exhibiting a high signal-to-noise ratio and lower measurement uncertainties. The formaldehyde dataset used in this study has been recently made available to the community and complements the long record of formaldehyde measurements from the Global Ozone Monitoring Experiment (GOME). We use the IMAGESv2 global chemistry-transport model driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, and from the newly developed MEGAN-ECMWF isoprene emission database. The adjoint of the model is implemented in a grid-based framework within which emission fluxes are derived at the model resolution, together with a differentiation of the sources in a grid cell. Two inversion studies are conducted using either the GFEDv1 or GFEDv2 as a priori for the pyrogenic fluxes. Although on the global scale the inferred emissions from the two categories exhibit only weak deviations from the corresponding a priori estimates, the regional updates often present large departures from their a priori values. The posterior isoprene emissions over North America, amounting to about 34 Tg C/yr, are estimated to be on average by 25% lower than the a priori over 2003–2006, whereas a strong increase (55%) is deduced over the south African continent, the optimized emission being estimated at 57 Tg C/yr. Over Indonesia the biogenic emissions appear to be overestimated by 20–30%, whereas over Indochina and the Amazon basin during the wet season the a priori inventory captures both the seasonality and the magnitude of the observed columns. Although neither biomass burning inventory seems to be consistent with the data over all regions, pyrogenic estimates inferred from the two inversions are reasonably similar, despite their a priori deviations. A number of sensitivity experiments are conducted in order to assess the impact of uncertainties related to the inversion setup and the chemical mechanism. Whereas changes in the background error covariance matrix have only a limited impact on the posterior fluxes, the use of an alternative isoprene mechanism characterized by lower HCHO yields (the GEOS-Chem mechanism) increases the posterior isoprene source estimate by 11% over northern America, and by up to 40% in tropical regions

    Evidence for a chemically differentiated outflow in Mrk 231

    Get PDF
    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO+^+ J=1→0J=1\rightarrow0 and J=2→1J=2\rightarrow1 of the ultraluminous infrared galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+^+ J=1→0J=1\rightarrow0 and J=3→2J=3\rightarrow2, and HNC J=1→0J=1\rightarrow0 in the same source. Results: In the line wings of the HCN, HCO+^+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+^+ outflow emission we find an average abundance ratio X(HCN)/X(HCO+)≳1000X(\mathrm{HCN})/X(\mathrm{HCO}^+)\gtrsim1000. Assuming a clumpy outflow, modelling of the HCN and HCO+^+ emission produces strongly inconsistent outflow masses. Conclusions: Both the anti-correlated outflow features of HCN and HCO+^+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+^+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+^+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+^+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium (ISM) in the galaxy.Comment: 12 pages, 8 figures, accepted for publication in A&

    Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns

    Get PDF
    A new one-decade (1997–2006) dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organic compounds (NMVOCs) are estimated from the Master Chemical Mechanism (MCM) and an explicit speciation profile of pyrogenic emissions. The model is driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, whereas biogenic emissions are provided either by the Global Emissions Inventory Activity (GEIA), or by a newly developed inventory based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) algorithms driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The comparisons focus on tropical ecosystems, North America and China, which experience strong biogenic and biomass burning NMVOC emissions reflected in the enhanced measured HCHO columns. These comparisons aim at testing the ability of the model to reproduce the observed features of the HCHO distribution on the global scale and at providing a first assessment of the performance of the current emission inventories. The high correlation coefficients (<i>r</i>>0.7) between the observed and simulated columns over most regions indicate a good consistency between the model, the implemented inventories and the HCHO dataset. The use of the MEGAN-ECMWF inventory improves the model/data agreement in almost all regions, but biases persist over parts of Africa and Australia. Although neither GFED version is consistent with the data over all regions, a better agreement is achieved over Indonesia and Southern Africa when GFEDv2 is used, but GFEDv1 succeeds better in getting the correct seasonal patterns and intensities of the fire episodes over the Amazon basin, as reflected in the significantly higher correlations calculated in this region. Although the uncertainties in the HCHO retrievals, especially over fire scenes, can be quite large, this study provides a first assessment about whether the improved methodologies and input data implemented in GFEDv2 and MEGAN-ECMWF lead to better results in the comparisons of modelled with observed HCHO column measurements
    • …
    corecore