29 research outputs found

    Geographical disparities in the impacts of heat on diabetes mortality and the protective role of greenness in Thailand: A nationwide case-crossover analysis.

    Get PDF
    Diabetes is a major public health problem globally, and heat exposure may be a potential risk factor for death among diabetes. This study examines the association between heat and diabetes mortality in different regions of Thailand and investigates whether heat effects are modified by regional greenness. Daily temperature and daily diabetes deaths data were obtained for 60 provinces of Thailand during 2000-2008. A case-crossover analysis was conducted to quantify the odds of heat-related death among diabetes. Meta-regression was then used to examine potential modification effects of regional greenness (as represented by the Normalized Difference Vegetation Index) on heat-related mortality. A strong association between heat and diabetes mortality was found in Thailand, with important regional variations. Nationally, the pooled odds ratio of diabetes mortality was 1.10 (95% confidence interval (CI): 1.06-1.14) for heat (90th percentile of temperature) and 1.20 (95% CI: 1.10-1.30) for extreme heat (99th percentile of temperature) compared with the minimum mortality temperature, across lag 0-1 days. Central and northeast Thailand were the most vulnerable regions. Regional greenness modified the effects of heat, with lower mortality impacts in areas of higher levels of greenness. In conclusion, heat exposure increases mortality risk in diabetes, with large geographical variations in risk suggesting the need for region-specific public health strategies. Increasing greenness levels may help to reduce the burden of heat on diabetes in Thailand against the backdrop of a warming climate

    Robust Anti‐Tumor T Cell Response with Efficient Intratumoral Infiltration by Nanodisc Cancer Immunotherapy

    Full text link
    Potent anti‐tumor T cell response and efficient intratumoral T cell infiltration are the major challenges for therapeutic cancer vaccines. To address these issues, a nanovaccine system is designed to promote anti‐tumor T cell responses, and intratumoral infiltration is examined in various murine tumor models. Subcutaneous vaccination with nanodiscs carrying human papillomavirus (HPV)‐16 E7 antigen elicits as high as ∼32% E7‐specific CD8α+ T cell responses in circulation, representing a 29‐fold improvement over the soluble peptide vaccination. Importantly, nanodisc vaccination also promotes robust intratumoral T cell infiltration and eliminates HPV16 E6/E7‐expressing TC‐1 tumors at mucosal sites, including lungs, inner lip, and intravaginal tissues. In a benchmark study with a live Listeria vaccine combined with anti‐PD‐1 IgG, nanodiscs plus anti‐PD‐1 immune checkpoint blockade elicits comparable levels of T cell responses with anti‐tumor efficacy. Furthermore, compared with Complete Freund’s Adjuvant combined with tetanus toxoid, nanodisc vaccination in HLA‐A02 mice generates >200‐fold stronger IFN‐γ+ T cell responses against a neoantigen from an HLA‐A02 melanoma patient. Overall, these results show that the nanodisc system is a promising cancer vaccine platform for inducing anti‐tumor T cell responses.Efficient infiltration of T cells in solid cancer is a major challenge for cancer immunotherapy. A nanoparticle vaccine system is developed to promote T cell infiltration into peripheral mucosal tissues and eliminate disseminated tumors. Nanodiscs are broadly applicable with a wide range of tumor antigens, thus providing a versatile and potent vaccine platform for eliciting T cell immunity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156420/3/adtp202000094.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156420/2/adtp202000094-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156420/1/adtp202000094_am.pd

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN

    No full text
    The purpose of this paper is to leverage the advantages of physics-informed neural network (PINN) and convolutional neural network (CNN) by using Legendre multiwavelets (LMWs) as basis functions to approximate partial differential equations (PDEs). We call this method Physics-Informed Legendre Multiwavelets CNN (PiLMWs-CNN), which can continuously approximate a grid-based state representation that can be handled by a CNN. PiLMWs-CNN enable us to train our models using only physics-informed loss functions without any precomputed training data, simultaneously providing fast and continuous solutions that generalize to previously unknown domains. In particular, the LMWs can simultaneously possess compact support, orthogonality, symmetry, high smoothness, and high approximation order. Compared to orthonormal polynomial (OP) bases, the approximation accuracy can be greatly increased and computation costs can be significantly reduced by using LMWs. We applied PiLMWs-CNN to approximate the damped wave equation, the incompressible Navier–Stokes (N-S) equation, and the two-dimensional heat conduction equation. The experimental results show that this method provides more accurate, efficient, and fast convergence with better stability when approximating the solution of PDEs

    Stereoscopic 3D Web: From idea to implementation

    No full text
    In recent years so called 3D web has emerged that gives people to view 3D web contents in a standard web browser, and the representative technologies are Web3D, WebGL and O3D. But since the standard web browser has only a single view in which the 3D contents are shown on a 2D display device, therefore the 3D web is essentially a kind of monoscopic 3D. Nowadays with the rapid development of stereoscopic 3D display device, especially glasses-free auto-stereoscopic 3D display device, we think stereoscopic 3D web will become a hot research field, as that can be used to stereoscopic 3DTV GUI, stereoscopic 3D games, stereoscopic 3D photo gallery, stereoscopic 3D virtual reality, and so forth. In this paper we propose our idea and its implementation for stereoscopic 3D web, and give an example that has been used as a stereoscopic 3DTV GUI.Computer Science, Information SystemsEngineering, Electrical & ElectronicEICPCI-S(ISTP)

    The bird community in a coastal wetland in East China and its spatial responses to a wind farm

    No full text
    Coastal wetlands in East China are essential stopover places for birds along the East Asian-Australian Flyway. However, numerous wind turbines have been built in or near these wetlands in recent years, which might disturb the bird community in the area. Therefore, investigating the bird community and its responses to wind farms in coastal wetlands of East China is of great significance for bird conservation. In the spring and autumn of 2019 and 2020, we investigated the bird community in the Rudong coastal wetland in East China using point counts and analysed the relationship between bird number and distance to the wind farm boundary through partial correlation analysis. A total of 11 orders and 103 species of birds, including four endangered species, were observed during our survey. Charadriiformes was the dominant taxon in the wetland. Passeriformes exhibited high species richness but low numbers. The results of partial correlation analysis indicated that birds’ responses to the wind farm varied depending on their dominance and category: dominant and subdominant birds tended to avoid the wind farm, whereas rare birds tended to approach them; aquatic birds were alert to the wind farm, whereas terrestrial birds better adapted to them. We concluded that the dominant aquatic birds, including the endangered species Calidris tenuirostris, were most negatively impacted by the wind farm; the occasional birds and rare aquatic birds might be disturbed by wind farms but not significantly so; and the rare terrestrial birds were least disturbed by or even benefited from the wind farm

    An Unmanned Underwater Vehicle Torpedoes Attack Behavior Autonomous Decision-Making Method Based on Model Fusion

    No full text
    The autonomous technology of unmanned platforms is the most dynamic frontier among fields of technology and, inevitably, is trending towards future development. Aiming at the dual requirements of reliable and real-time autonomous decision-making of unmanned underwater vehicles in complex and unfamiliar environments, this article proposes an intelligent decision-making method of attack behavior based on model fusion. The experimental dataset is generated through simulation modeling, and an appropriate amount of noise is added to simulate the observation error in a real situation. The threshold of weapon-hit probability is set according to the requirements of combat missions, and the decision-making of attack behavior is transformed into the problem of imbalanced sample classification with noisy data. Through theoretical analysis and experimental testing, the classification effects of algorithms such as Logistic Regression (LR), K-nearest neighbor (KNN), support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and ensemble learning are compared. On this basis, the intelligent decision model is constructed by using synthetic minority oversampling technique resampling and three model fusion methods of voting, stacking, and blending. The experimental results show that compared with traditional simulation decision-making and common classification algorithms, the proposed method has higher accuracy, recall rate, area-under-the-curve value, and model generalization ability. It can not only effectively identify the impact of noise data on attack-behavior decision-making, but also ensures the decision-making speed through offline training, and provides references for the research in the field of equipment development and intelligent decision-making in the future

    Towards Improving the Outcomes of Multiple Ovulation and Embryo Transfer in Sheep, with Particular Focus on Donor Superovulation

    No full text
    Considerable improvements in sheep multiple ovulation and embryo transfer (MOET)protocols have been made; however, unlike for cattle, MOET is poorly developed in sheep, and thus has not been broadly applicable as a routine procedure. The tightly folded nature of the ewe cervix, the inconsistent ovarian response to various superovulatory treatments, and the requirement of labor to handle animals, particularly during large-scale production, has limited the implementation of successful MOET in sheep. Moreover, several extrinsic factors (e.g., sources, the purity of gonadotrophins and their administration) and intrinsic factors (e.g., breed, age, nutrition, reproductive status) severely limit the practicability of MOET in sheep and other domestic animals. In this review, we summarize the effects of different superovulatory protocols, and their respective ovarian responses, in terms of ovulation rate, and embryo recovery and transfer. Furthermore, various strategies, such as inhibin immunization, conventional superovulation protocols, and melatonin implants for improving the ovarian response, are discussed in detail. Other reproductive techniques and their relative advantages and disadvantages, such as artificial insemination (AI), and donor embryo recovery and transfer to the recipient through different procedures, which must be taken into consideration for achieving satisfactory results during any MOET program in sheep, are also summarized in this article
    corecore