58 research outputs found

    Oligoclonal bands increase the specificity of MRI criteria to predict multiple sclerosis in children with radiologically isolated syndrome

    Get PDF
    Background: Steps towards the development of diagnostic criteria are needed for children with the radiologically isolated syndrome to identify children at risk of clinical demyelination. Objectives: To evaluate the 2005 and 2016 MAGNIMS magnetic resonance imaging criteria for dissemination in space for multiple sclerosis, both alone and with oligoclonal bands in cerebrospinal fluid added, as predictors of a first clinical event consistent with central nervous system demyelination in children with radiologically isolated syndrome. Methods: We analysed an international historical cohort of 61 children with radiologically isolated syndrome (18 years), defined using the 2010 magnetic resonance imaging dissemination in space criteria (Ped-RIS) who were followed longitudinally (mean 4.2 4.7 years). All index scans also met the 2017 magnetic resonance imaging dissemination in space criteria. Results: Diagnostic indices (95% confidence intervals) for the 2005 dissemination in space criteria, with and without oligoclonal bands, were: sensitivity 66.7% (38.4\u201388.2%) versus 72.7% (49.8\u201389.3%); specificity 83.3% (58.6\u201396.4%) versus 53.9% (37.2\u201369.9%). For the 2016 MAGNIMS dissemination in space criteria diagnostic indices were: sensitivity 76.5% (50.1\u201393.2%) versus 100% (84.6\u2013100%); specificity 72.7% (49.8\u201389.3%) versus 25.6% (13.0\u201342.1%). Conclusions: Oligoclonal bands increased the specificity of magnetic resonance imaging criteria in children with Ped-RIS. Clinicians should consider testing cerebrospinal fluid to improve diagnostic certainty. There is rationale to include cerebrospinal fluid analysis for biomarkers including oligoclonal bands in planned prospective studies to develop optimal diagnostic criteria for radiologically isolated syndrome in children

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    The association between malnutrition and the incidence of malaria among young HIV-infected and -uninfected Ugandan children: a prospective study

    Get PDF
    BACKGROUND: In sub-Saharan Africa, malnutrition and malaria remain major causes of morbidity and mortality in young children. There are conflicting data as to whether malnutrition is associated with an increased or decreased risk of malaria. In addition, data are limited on the potential interaction between HIV infection and the association between malnutrition and the risk of malaria. METHODS: A cohort of 100 HIV-unexposed, 203 HIV-exposed (HIV negative children born to HIV-infected mothers) and 48 HIV-infected children aged 6 weeks to 1 year were recruited from an area of high malaria transmission intensity in rural Uganda and followed until the age of 2.5 years. All children were provided with insecticide-treated bed nets at enrolment and daily trimethoprim-sulphamethoxazole prophylaxis (TS) was prescribed for HIV-exposed breastfeeding and HIV-infected children. Monthly routine assessments, including measurement of height and weight, were conducted at the study clinic. Nutritional outcomes including stunting (low height-for-age) and underweight (low weight-for-age), classified as mild (mean z-scores between -1 and -2 during follow-up) and moderate-severe (mean z-scores < -2 during follow-up) were considered. Malaria was diagnosed when a child presented with fever and a positive blood smear. The incidence of malaria was compared using negative binomial regression controlling for potential confounders with measures of association expressed as an incidence rate ratio (IRR). RESULTS: The overall incidence of malaria was 3.64 cases per person year. Mild stunting (IRR = 1.24, 95% CI 1.06-1.46, p = 0.008) and moderate-severe stunting (IRR = 1.24, 95% CI 1.03-1.48, p = 0.02) were associated with a similarly increased incidence of malaria compared to non-stunted children. Being mildly underweight (IRR = 1.09, 95% CI 0.95-1.25, p = 0.24) and moderate-severe underweight (IRR = 1.12, 95% CI 0.86-1.46, p = 0.39) were not associated with a significant difference in the incidence of malaria compared to children who were not underweight. There were no significant interactions between HIV-infected, HIV-exposed children taking TS and the associations between malnutrition and the incidence of malaria. CONCLUSIONS: Stunting, indicative of chronic malnutrition, was associated with an increased incidence of malaria among a cohort of HIV-infected and -uninfected young children living in an area of high malaria transmission intensity. However, caution should be made when making causal inferences given the observational study design and inability to disentangle the temporal relationship between malnutrition and the incidence of malaria. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00527800

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Reflections of Moral Suffering, Resilience, and Wisdom of Pediatric Oncology Social Workers during the COVID-19 Pandemic

    No full text
    Background: The COVID-19 pandemic has significantly altered the lives of pediatric oncology social workers. Challenges include difficulty building rapport with the use of telephone/computers, lack of clarity around who is designated as “essential”, structural challenges, isolation, and witnessing distress. This study aimed to describe the ways that the pandemic has personally impacted pediatric oncology social workers. Methods: Participants were recruited through the Association of Pediatric Oncology Social Workers (APOSW) listserv. In total, 101 participants from 31 states and the District of Columbia completed an online survey containing quantitative and open-ended questions. Qualitative data analysis included thematic analysis of participants’ optional survey responses to three open-ended questions. Results: Fifty-seven of the participants provided responses that revealed 3 first level codes and 11 second level codes. First level codes were developed a priori from the questions: Experiences that stay with you, Wisdom gained and Impact on your work. Pandemic-related challenges caused moral suffering and professional challenges for participants but also created opportunities to find meaning in their work. Conclusion: Data illuminated moral suffering, unrecognized resilience, new ways of maintaining self-and family care, and creative approaches to care of children with cancer and their families at diagnosis, during treatments and at the end of life
    corecore