3,896 research outputs found

    A Macromodeling-Based Hybrid Method for the Computation of Transient Electromagnetic Fields Scattered by Nonlinearly Loaded Metal Structures

    Get PDF
    In this article, we present a hybrid numerical scheme to compute the transient electromagnetic fields scattered by a metallic structure loaded with lumped nonlinear loads. The proposed scheme is based on three successive steps. First, the field coupling problem to the structure with the nonlinear loads removed is solved in the frequency domain using a method-of-moments (MoM) formulation. The unloaded structure is thus characterized as a generalized multiport Thevenin equivalent, whose components are represented as time-domain operators by performing a set of rational approximations followed by closed-form Laplace transform inversion. Transient port voltages and currents in the presence of nonlinear loads are then computed using a standard circuit solver. As a last step, the substitution theorem is used to solve the radiation problem again in the frequency domain using a MoM solver, the results of which are then translated into the time domain by means of rational approximations and recursive convolution operations. The proposed method enables an accurate and efficient evaluation of the transient nonlinearly scattered fields by the loaded structure, with a good potential for scalability to large-scale high-complexity nonlinear shields. Extensive validations are provided to demonstrate the accuracy of the proposed method, which is here applied to the characterization of energy-selective shielding for protection of sensitive devices from high-intensity radiated fields

    ANOMALOUS GAUGE BOSON INTERACTIONS

    Get PDF
    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge boson self-interactions. If the energy scale of the new physics is ∌1\sim 1 TeV, these low energy anomalous couplings are expected to be no larger than O(10−2){\cal O}(10^{-2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures available on request. The complete paper, is available at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF Long Range Planning Stud

    Effects by Paramagnetic and Diamagnetic Materials in a 1.5-Tesla Highfield Magnetic Resonance Imaging System (MRI)

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Dieser Artikel zeigt die Ergebnisse einer experimentellen Untersuchung des Störeinflusses von paramagnetischen und diamagnetischen Materialien auf die Bildgebung in einem geschlossenen 1,5-Tesla-Hochfeld-Magnetresonanztomographen(MRT). Mit drei verschiedenen Sequenztypen (SE, GE, EPI) wurden unterschiedlich große metallische und nichtmetallische WerkstĂŒckprofile hinsichtlich der entstehenden Artefakte untersucht. Zur Darstellung der Artefakte wurde ein mit Gd-Mn-Lösung gefĂŒllter KunststoffbehĂ€lter (Phantom) verwendet, zu dem die zu untersuchenden Materialien wĂ€hrend der VersuchsdurchfĂŒhrung in definierten AbstĂ€nden parallel verschoben wurden. Die Auswertung der Schnittbilder erfolgte in transversaler und sagittaler Untersuchungsebene und ergab, daß Aluminium- und Kunststoffprofile auch bei sehr geringem Abstand zum Phantom die kleinsten Bildstörungen verursachten. Besonders starke Artefakte wurden bei den untersuchten Stahl- und Kupferprofilen festgestellt. Bei einem Vergleich der angewendeten Sequenztypen konnte nachgewiesen werden, daß besonders die SE-Sequenz, trotz der teilweise stark variierenden Materialprofile, eine geringere ArtefaktanfĂ€lligkeit und somit eine höhere StabilitĂ€t in der Bildgebung im Gegensatz zur GE- und EPI-Sequenz aufwies. Diese Untersuchungen wurden im Anschluß an eine intensive Literaturstudie (Internet, Medline, Meditec) durchgefĂŒhrt. Relevante Publikationsquellen gibt es bisher nur sehr wenige.This article shows the results of an experimental investigation of the interference by paramagnetic and diamagnetic materials on imaging in a closed 1.5 Tesla high field magnetic resonance imaging System(MRI). For different types of sequences (SE, GE, EPI) the effects of metal and non-metal profiles in producing artefacts were investigated. A phantom (plastictrunk) filled with Gd-Mn-solution was used for representation of the artefacts. The materials analysed were placed parallel to the phantom at predetermined distances. The images were obtained in transverse and sagittal planes and analysed with respect to the resulting artefacts.The results show that aluminium and polymer profiles produce the weakest artefacts, even when the material is positioned close to the phantom. A comparison of the sequence types shows that the SE-sequence has a low sensitivity to artefacts, despite the great profile variation in size and shape. The SE-sequence accordingly showed a higher imaging stability scompared with the GE- and EPI-sequences. Steel and copper produced the strongest artefacts. The examination was begun after an intensive study of the literature(Internet, Medline, Meditec). So far have been few publications on this subject

    Modus Vivendi Beyond the Social Contract: Peace, Justice, and Survival in Realist Political Theory

    Get PDF
    This essay examines the promise of the notion of modus vivendi for realist political theory. I interpret recent theories of modus vivendi as affirming the priority of peace over justice, and explore several ways of making sense of this idea. I proceed to identify two key problems for modus vivendi theory, so conceived. Normatively speaking, it remains unclear how this approach can sustain a realist critique of Rawlsian theorizing about justice while avoiding a Hobbesian endorsement of absolutism. And conceptually, the theory remains wedded to a key feature of social contract theory: political order is conceived as based on agreement. This construes the horizontal tensions among individual or group agents in society as prior to the vertical, authoritative relations between authorities and their subjects. Political authority thereby appears from the start as a solution to societal conflict, rather than a problem in itself. I argue that this way of framing the issue abstracts from political experience. Instead I attempt to rethink the notion of modus vivendi from within the lived experience of political conflict, as oriented not primarily toward peace, but political survival. With this shift of perspective, the idea of modus vivendi shows us, pace Bernard Williams, that the “first political question” is not how to achieve order and stability, but rather: what can I live with

    The UVES Large Program for testing fundamental physics - III. Constraints on the fine-structure constant from 3 telescopes

    Full text link
    Large statistical samples of quasar spectra have previously indicated possible cosmological variations in the fine-structure constant, α\alpha. A smaller sample of higher signal-to-noise ratio spectra, with dedicated calibration, would allow a detailed test of this evidence. Towards that end, we observed equatorial quasar HS 1549++1919 with three telescopes: the Very Large Telescope, Keck and, for the first time in such analyses, Subaru. By directly comparing these spectra to each other, and by `supercalibrating' them using asteroid and iodine-cell tests, we detected and removed long-range distortions of the quasar spectra's wavelength scales which would have caused significant systematic errors in our α\alpha measurements. For each telescope we measure the relative deviation in α\alpha from the current laboratory value, Δα/α\Delta\alpha/\alpha, in 3 absorption systems at redshifts zabs=1.143z_{\mathrm{abs}}=1.143, 1.342, and 1.802. The nine measurements of Δα/α\Delta\alpha/\alpha are all consistent with zero at the 2-σ\sigma level, with 1-σ\sigma statistical (systematic) uncertainties 5.6--24 (1.8--7.0) parts per million (ppm). They are also consistent with each other at the 1-σ\sigma level, allowing us to form a combined value for each telescope and, finally, a single value for this line of sight: Δα/α=−5.4±3.3stat±1.5sys\Delta\alpha/\alpha=-5.4 \pm 3.3_{\mathrm{stat}} \pm 1.5_{\mathrm{sys}} ppm, consistent with both zero and previous, large samples. We also average all Large Programme results measuring Δα/α=−0.6±1.9stat±0.9sys\Delta\alpha/\alpha=-0.6 \pm 1.9_{\mathrm{stat}} \pm 0.9_{\mathrm{sys}} ppm. Our results demonstrate the robustness and reliability at the 3 ppm level afforded by supercalibration techniques and direct comparison of spectra from different telescopes.Comment: 24 pages, 11 figures, 9 table

    Possible Signatures of a Cold-Flow Disk from MUSE using a z=1 galaxy--quasar pair towards SDSSJ1422-0001

    Get PDF
    We use a background quasar to detect the presence of circum-galactic gas around a z=0.91z=0.91 low-mass star forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the VLT show that the host galaxy has a dust-corrected star-formation rate (SFR) of 4.7±\pm0.2 Msun/yr, with no companion down to 0.22 Msun/yr (5 σ\sigma) within 240 kpc (30"). Using a high-resolution spectrum (UVES) of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle α\alpha of only 15∘15^\circ), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold flow disk" extending at least 12 kpc (3×R1/23\times R_{1/2}). We estimate the mass accretion rate M˙in\dot M_{\rm in} to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the HI column density of log⁥NHI≃20.4\log N_{\rm HI} \simeq 20.4 obtained from a {\it HST}/COS NUV spectrum. From a detailed analysis of the low-ionization lines (e.g. ZnII, CrII, TiII, MnII, SiII), the accreting material appears to be enriched to about 0.4 Z⊙Z_\odot (albeit with large uncertainties: log⁥Z/Z⊙=−0.4 ± 0.4\log Z/Z_\odot=-0.4~\pm~0.4), which is comparable to the galaxy metallicity (12+log⁥O/H=8.7±0.212+\log \rm O/H=8.7\pm0.2), implying a large recycling fraction from past outflows. Blue-shifted MgII and FeII absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The MgII and FeII doublet ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent FeII* emission.Comment: 17 pages, 11 figures, in press (ApJ), minor edits after the proofs. Data available at http://muse-vlt.eu/science/j1422

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry

    Full text link
    We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter

    Light-cone Gauge NSR Strings in Noncritical Dimensions II -- Ramond Sector

    Get PDF
    Light-cone gauge superstring theory in noncritical dimensions corresponds to a worldsheet theory with nonstandard longitudinal part in the conformal gauge. The longitudinal part of the worldsheet theory is a superconformal field theory called X^{\pm} CFT. We show that the X^{\pm} CFT combined with the super-reparametrization ghost system can be described by free variables. It is possible to express the correlation functions in terms of these free variables. Bosonizing the free variables, we construct the spin fields and BRST invariant vertex operators for the Ramond sector in the conformal gauge formulation. By using these vertex operators, we can rewrite the tree amplitudes of the noncritical light-cone gauge string field theory, with external lines in the (R,R) sector as well as those in the (NS,NS) sector, in a BRST invariant way.Comment: 33 pages; v2: minor modification
    • 

    corecore