35 research outputs found

    Highly Efficient Production of Soluble Proteins from Insoluble Inclusion Bodies by a Two-Step-Denaturing and Refolding Method

    Get PDF
    The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This “two-step-denaturing and refolding” (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes

    Conformational Toggling of Yeast Iso-1-Cytochrome c in the Oxidized and Reduced States

    Get PDF
    To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by UV-visible, circular dichroism, and resonance Raman spectroscopy. To further probe the functional importance of Pro71 in oxidation state dependent conformational changes occurred in cyt c, the solution structures of P71H mutant in both oxidation states were determined. The structures indicate that the half molecule of cyt c (aa 50–102) presents a kind of “zigzag riveting ruler” structure, residues at certain positions of this region such as Pro71, Lys73 can move a big distance by altering the tertiary structure while maintaining the secondary structures. This finding provides a molecular insight into conformational toggling in different oxidation states of cyt c that is principle significance to its biological functions in electron transfer and apoptosis. Structural analysis also reveals that Pro71 functions as a key hydrophobic patch in the folding of the polypeptide of the region (aa 50–102), to prevent heme pocket from the solvent

    Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence

    Get PDF
    RET protein functions as a receptor-type tyrosine kinase and has been found to be aberrantly expressed in a wide range of human diseases. A highly GC-rich region upstream of the promoter plays an important role in the transcriptional regulation of RET. Here, we report the NMR solution structure of the major intramolecular G-quadruplex formed on the G-rich strand of this region in K+ solution. The overall G-quadruplex is composed of three stacked G-tetrad and four syn guanines, which shows distinct features for all parallel-stranded folding topology. The core structure contains one G-tetrad with all syn guanines and two other with all anti-guanines. There are three double-chain reversal loops: the first and the third loops are made of 3 nt G-C-G segments, while the second one contains only 1 nt C10. These loops interact with the core G-tetrads in a specific way that defines and stabilizes the overall G-quadruplex structure and their conformations are in accord with the experimental mutations. The distinct RET promoter G-quadruplex structure suggests that it can be specifically involved in gene regulation and can be an attractive target for pathway-specific drug design

    Plasma mRNA expression levels of BRCA1 and TS as potential predictive biomarkers for chemotherapy in gastric cancer

    Get PDF
    OBJECTIVE: Personalized chemotherapy based on predictive biomarkers can maximize efficacy. However, tumor tissue obtained at the time of initial diagnosis will not reflect genetic alterations observed at the time of disease progression. We have examined whether plasma mRNA levels can be a surrogate for tumor levels in predicting chemosensitivity. METHODS: In 150 gastric cancer patients, mRNA levels of BRCA1 and TS were assessed in plasma and paired tumor tissue. The Mann-Whitney U-test was used to compare mRNA expression levels between tumor samples exhibiting in vitro sensitivity or resistance to docetaxel and pemetrexed. All statistical tests were two-sided. RESULTS: There were significant correlations between plasma and tumor mRNA levels of BRCA1 (rho = 0.696, P < 0.001) and TS (rho = 0.620, P < 0.001). BRCA1 levels in plasma (docetaxel-sensitive: 1.25; docetaxel-resistant: 0.50, P < 0.001) and tumor (docetaxel-sensitive: 8.81; docetaxel-resistant: 4.88, P < 0.001) were positively associated with docetaxel sensitivity. TS levels in plasma (pemetrexed-sensitive: 0.90; pemetrexed-resistant: 1.82, P < 0.001) and tumor (pemetrexed-sensitive: 6.56; pemetrexed-resistant: 16.69, P < 0.001) were negatively associated with pemetrexed sensitivity. CONCLUSIONS: Plasma mRNA expression levels mirror those in the tumor and may have a promising role as potential predictive biomarkers for chemotherapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-014-0355-2) contains supplementary material, which is available to authorized users

    Research advances on cytosine deaminase APOBEC1

    No full text
    In order to fully understand the mechanisms of Apolipoprotein B mRNA(ApoB mRNA)editing enzyme catalytic polypeptide-1(APOBEC1), this review introduced the amino acid and nucleic acid sequences of APOBEC1 and ApoB mRNA, summarized and mapped the binding models of APOBEC1 with different cofactors to explain the molecular mechanism of APOBEC1 catalyzing the deamination of the 6666 C of ApoB mRNA(C6666). The researches of rodent APOBEC1 inhibiting multiple retroviruses were exemplified here, and the related mechanisms of rabbit APOBEC1 binding to human immunodeficiency virus type 1(HIV-1)and editing the viral genome were discussed.This review also introduced APOBEC1 regulating the expression of cytokines related to cancers and other diseases by deamination editing or combining with AU-rich element (ARE)of RNAs

    NMR Spectroscopic Approach Reveals Metabolic Diversity of Human Blood Plasma Associated with Protein–Drug Interaction

    No full text
    Although blood plasma has been used to diagnose diseases and to evaluate physiological conditions, it is not easy to establish a global normal concentration range for the targeting components in the plasma due to the inherent metabolic diversity. We show here that NMR spectroscopy coupled with principal component analysis (PCA) may provide a useful method for quantitatively characterizing the metabolic diversity of human blood plasma. We analyzed 70 human blood plasma samples with and without addition of ibuprofen. By defining the PC score values as diversity index (<i>I</i><sub>div</sub>) and the drug-induced PC score value change as interaction index (<i>I</i><sub>dist</sub>), we find that the two indexes are highly correlated (<i>P</i> < 0.0001). Triglycerides, choline-containing phospholipids, lactate, and pyruvate are associated with both indexes (<i>P</i> < 0.0001), respectively. In addition, a significant amount of lactate and pyruvate are in the NMR “invisible” bound forms and can be replaced by ibuprofen. The diffusion and transverse relaxation time weighted NMR approaches gave rise to a better characterization of the diversity and the interaction than that of the one acquired using NOESYPR1D with 100 ms mixing time. These results might be useful for understanding the blood plasma–drug interaction and personalized therapy

    Structural Basis for Cytochrome <i>c</i> Y67H Mutant to Function as a Peroxidase

    No full text
    <div><p>The catalytic activity of cytochrome <i>c</i> (cyt <i>c</i>) to peroxidize cardiolipin to its oxidized form is required for the release of pro-apoptotic factors from mitochondria, and for execution of the subsequent apoptotic steps. However, the structural basis for this peroxidation reaction remains unclear. In this paper, we determined the three-dimensional NMR solution structure of yeast cyt <i>c</i> Y67H variant with high peroxidase activity, which is almost similar to that of its native form. The structure reveals that the hydrogen bond between Met80 and residue 67 is disrupted. This change destabilizes the sixth coordination bond between heme Fe<sup>3+</sup> ion and Met80 sulfur atom in the Y67H variant, and further makes it more easily be broken at low pH conditions. The steady-state studies indicate that the Y67H variant has the highest peroxidase activities when pH condition is between 4.0 and 5.2. Finally, a mechanism is suggested for the peroxidation of cardiolipin catalyzed by the Y67H variant, where the residue His67 acts as a distal histidine, its protonation facilitates O-O bond cleavage of H<sub>2</sub>O<sub>2</sub> by functioning as an acidic catalyst.</p></div

    Effects of hormone replacement therapy on glucose and lipid metabolism in peri- and postmenopausal women with a history of menstrual disorders

    No full text
    Abstract Background Previous studies have indicated that women with a history of menstrual disorders have an increased risk of metabolic and cardiovascular diseases. This has been attributed to the high proportion of polycystic ovary syndrome (PCOS) among this group. The favorable effects of hormone replacement therapy (HRT) on serum lipid profiles and glucose homeostasis in postmenopausal women is widely accepted. Whether HRT can also show positive effects on metabolic homeostasis in menopausal women with prior menstrual disorders (a putative PCOS phenotype) has not been reported yet. The aim of the study was to compare the effects of HRT on glucose and lipid metabolism in peri- and postmenopausal women with prior menstrual disorders and controls who did not have prior menstrual disorders. Methods A retrospective multicenter study was conducted including 595 peri- and postmenopausal women who received HRT at four hospitals in the Zhejiang Province from May 31, 2010 to March 8, 2021. Participants were divided into the Normal menstruation group and the Menstrual disorders group according to their prior usual menstrual cycle pattern. Glucose and lipid metabolism indicators were assessed at baseline and after HRT. The results were compared between and within the groups, and data from peri- and postmenopausal women were analyzed separately. Results HRT significantly decreased fasting insulin and homeostasis model assessment of insulin resistance in perimenopausal users, and fasting plasma glucose levels in postmenopausal users with prior menstrual disorders, compared with baseline. Furthermore, HRT decreased low-density lipoprotein cholesterol, total cholesterol, fasting insulin, fasting plasma glucose and homeostasis model assessment of insulin resistance in both peri- and postmenopausal controls, compared with baseline. Nevertheless, no significant differences were observed in any of the glucose or lipid metabolism indicators at baseline and follow-up, as well as changes from baseline levels between menopausal women with and without prior menstrual disorders. Conclusions HRT shows more obvious within-group improvements in glucose and lipid metabolism in controls, but there is no significant between-group difference. Further prospective studies are required for confirmation
    corecore