108 research outputs found

    Experimental study on the generated pyroshock level under different amount of explosive

    Get PDF
    The purpose of this study is to evaluate the effect of the amount of explosive on generated pyroshock of a typical igniter. In this study, pyrotechnic experiments of the igniter are performed. The output pressure is measured with a pressure transducer while acceleration data is obtained using piezoelectric accelerometers. Finally, the effects of the amount of explosive on the generated pyroshock are discussed based on results in time and frequency domain. Results show that the relation between the amount of explosive and peak pressure of typical igniter shows good agreement with Nobel-Abel equation of state (EOS). Moreover, peak acceleration and SRS both show an approximate linear growth with increased amount of explosive

    Numerical simulation of separation shock characteristics of a piston type explosive bolt

    Get PDF
    A piston type explosive bolt is modeled by using a hydrocodes AUTODYN. The influence of the charge amount on the separation shock is analyzed. The results show that the separation shock of the piston type explosive bolt mainly includes two aspects: the shock caused by explosive detonation and the impact of the piston at the end of stroke. As the charge amount increases, the collision speed of piston first increases and then decreases, and the separation shock first increases and then stabilizes

    Gene discovery by genome-wide CDS re-prediction and microarray-based transcriptional analysis in phytopathogen Xanthomonas campestris

    Get PDF
    Zhou L, Vorhölter F-J, He Y-Q, et al. Gene discovery by genome-wide CDS re-prediction and microarray-based transcriptional analysis in phytopathogen Xanthomonas campestris. BMC Genomics. 2011;12(1): 359.ABSTRACT: One of the major tasks of the post-genomic era is "reading" genomic sequences in order to extract all the biological information contained in them. Although a wide variety of techniques is used to solve the gene finding problem and a number of prokaryotic gene-finding software are available, gene recognition in bacteria is far from being always straightforward. This study reported a thorough search for new CDS in the two published Xcc genomes. In the first, putative CDSs encoded in the two genomes were re-predicted using three gene finders, resulting in the identification of 2850 putative new CDSs. In the second, similarity searching was conducted and 278 CDSs were found to have homologs in other bacterial species. In the third, oligonucleotide microarray and RT-PCR analysis identified 147 CDSs with detectable mRNA transcripts. Finally, in-frame deletion and subsequent phenotype analysis of confirmed that Xcc_CDS002 encoding a novel SIR2-like domain protein is involved in virulence and Xcc_CDS1553 encoding a ArsR family transcription factor is involved in arsenate resistance. Despite sophisticated approaches available for genome annotation, many cellular transcripts have remained unidentified so far in Xcc genomes. Through a combined strategy involving bioinformatic, postgenomic and genetic approaches, a reliable list of 306 new CDSs was identified and a more thorough understanding of some cellular processes was gained

    Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    Get PDF
    Purpose: To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods: Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results: A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions: Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for treating retinal degenerations merits further investigation

    Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model

    Get PDF
    BACKGROUND: Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. METHODOLOGIES: We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. PRINCIPAL FINDINGS: We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm(3)) compared with vehicle group (238.63±19.69 mm(3), P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm(3)) compared with vehicle group (2914.17±780.52 mm(3), P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). CONCLUSIONS/SIGNIFICANCE: This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p

    Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead

    No full text
    Traditional fragmentation warheads are usually initiated on the axis, producing a uniform fragment distribution around the warhead, but only little portion of them can be imposed on the targets. The aimable warhead, on the other hand, using the off-axis initiations or the structure deforming, can improve the warhead energy utilization highly. Seeking methods to both enhance the fragment velocity and density has significant value for improving the target damage probability. In this article, a warhead shaped as hexagonal prism was studied using arena experiment and numerical modeling and compared with the traditional cylindrical structure. The fragment velocities and target hit patterns of the two types of warheads under axial initiation and asymmetrical initiation are obtained. It is revealed that for the hexagonal prism warhead, the asymmetrical initiation can enhance the fragment velocities by 27.71% and enhance fragment density by 34.09% compared to the axial initiation. The fragment velocity enhancement is close to that of the cylindrical warhead, but the fragment density enhancement is far above the cylindrical warhead. This indicates that the asymmetrically initiated hexagonal prism warhead is a very effective aimable warhead
    corecore