98 research outputs found

    Timing and thermal evolution of fold-and-thrust belt formation in the Ultima Esperanza District, 51°S Chile: Constraints from K-Ar dating and illite characterization

    Get PDF
    K/Ar dating on llite in Upper Cretaceous low-grade metamorphic pelites in the Torres del Paine area was used to set new time constraints on the development of the Patagonian retroarc fold-and-thrust belt (FTB) caused by the subduction of the Antarctic Plate beneath the South American Plate. The combined use of illite crystallinity (Kübler Index), polytype quantification and K/Ar dating of illite fractions (<0.2, <2 and 2-6 µm) allowed to distinguish four distinct periods of illite growth based on their K/Ar ages and degree of regional metamorphism: (1) early Cenomanian (98 Ma) illite crystallization, (2) widespread early Campanian (ca. 80 Ma) diagenetic illite growth under anchizonal metamorphic conditions, (3) a significant period of illite formation in the early Paleocene (ca. 60 Ma), and (4) a late stage of illite growth in the early Eocene (55-46 Ma) under epizonal conditions. The earliest indication for the emergent FTB formation in the hinterland is documented in a metapelitic clast (14-9, <2 µm) within the Upper Cretaceous Cerro Toro conglomerate which yields a K/Ar cooling age of 98.3±1.2 Ma and an epizonal KI value of 0.24 ∆°2Θ. After a certain period of geological quietness an interval of major thrusting and uplift occurred between ca. 60 and 46 Ma. The east dipping Rio Nutria and Rio Rincon thrusts record the onset of thrust and fold activity which can be placed close to 60 Ma. They also mark the frontal thrust towards the less deformed Magallanes foreland basin. In the western part of the internal domain, widespread fault and thrust activity of the frontal wedge and associated thermal overprint continued and is recorded until 46 Ma by K/Ar illite cooling ages. The flexural subsidence that is driven by the thrust sheet loading in the internal domain was responsible for the eastward migration of the foreland depocenter and the rapid increase of sedimentation rate along the monoclinal belt. No Miocene thrusting nor uplift event has been recorded by K/Ar illite dating in the study area

    Chemical composition of biotite and hornblende and cooling ages as indicators of the emplacement conditions of the La Esperanza Plutonic Complex (Upper Permian), North Patagonian Massif

    Get PDF
    El Complejo Plutónico La Esperanza está situado en el sector norte del Macizo Norpatagónico y es parte del cinturón magmático Paleozoico Superior del norte de la Patagonia. Dentro de este complejo se agrupan mayormente granodioritas y monzogranitos biotítico-anfibólicos (Granodiorita Prieto) o biotíticos (Granito Donosa), siendo 273 Ma la edad de cristalización de los primeros. En este trabajo se utilizan las composiciones minerales de biotitas y anfíboles para describir la naturaleza del magma y estimar la presión y temperatura del emplazamiento de estos cuerpos plutónicos. En base a la química de las biotitas, el Complejo Plutónico La Esperanza presenta una signatura magmática calcoalcalina con tendencia a la peraluminosidad, la cual puede ser asociada a ambientes transicionales orogénico- anorogénico. Las presiones de emplazamiento calculadas para la Granodiorita Prieto oscilan entre 0,6 y 2,0 kbar registrándose un aumento de la presión en la facies de granitoides inequigranulares aflorante al este de la localidad de La Esperanza. El termómetro hornblenda-plagioclasa indica que este cuerpo se emplazó a una temperatura de entre 630 y 790ºC en condiciones de alta fugacidad de oxígeno. Estos resultados, en combinación con edades de enfriamiento, indican un emplazamiento somero en un ambiente con un régimen termal elevado que habría permanecido en actividad desde el Pérmico medio al menos hasta el límite permotriásico.La Esperanza Plutonic Complex crops out in the northern part of the North Patagonian Massif in the Upper Paleozoic magmatic belt of northern Patagonia. This magmatic complex is mainly composed of 273 Ma biotite and amphibole bearing (Prieto Granodiorite) or biotite bearing (Donosa Granite) granitoids. In this study, biotite and amphibole mineral compositions are used to describe the nature of the granitic magma and to estimate the pressure and temperature at which these plutons were emplaced. Based on biotite chemistry, La Esperanza Plutonic Complex represents a calc-alkaline magma with a trend of increasing peraluminosity, which could be related to a transitional orogenic to anorogenic setting. Emplacement pressures for Prieto Granodiorite vary between 0,6 and 2,0 kbar, with higher values in an inequigranular facies which crops out to the east of La Esperanza locality. Hornblende-Plagioclase thermometer yields emplacement temperatures ranging from 630 to 790ºC at high oxygen fugacity conditions. These results, combined with good qualitycooling ages, propose a shallow emplacement in an elevated thermal regime that might have lasted from Middle Permian to Permotriassic times.Fil: Martínez Dopico, Carmen Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Lopez, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Wemmer, Klaus. Universität Göttingen; AlemaniaFil: Rapalini, Augusto Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; Argentin

    Syn-kinematic magma ascent and batholith inflation (Sierra de San Luis/Argentina)

    Get PDF
    The measurement of the anisotropy of the magnetic susceptibility (AMS) is now routinely used since more than four decades in the analyses of rock fabrics in granitic rocks (e.g. Stacy 1960, Henry 1975, Gleizes et al. 1993). Even though the intensity of fabrics in granitoids is often weakly developed the significance of orientation and shape of crystals is the same like in other deformed rock types. By revealing the distribution of fabrics in plutonic rocks one of the still ongoing discussions in granite tectonics may be addressed: How did those sometimes voluminous batholiths were inflated in the middle crust? We are presenting magnetic fabric data on a series of Devonian batholiths that intruded the polyphase deformed metaclastites of the Sierra de San Luis (32°100– 33°200 S / 65°150 – 66°200 W) in central Argentina. Regional considerations on the tectonic regime during the emplacement of the batholiths are inferred from combined field, microstructural and AMS observations...conferenc

    The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview

    Get PDF
    The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580–510 Ma) Pampean, the late Cambrian–Ordovician (500–440 Ma) Famatinian and the Devonian-Carboniferous (400–350 Ma) Achalian orogenies. Geochronological and Sm–Nd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm–Nd results for the metamorphic basement suggest that the TDM age interval of 1.8–1.7 Ga, which is associated with the less radiogenic values of εNd(540) (−6 to −8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger TDM age and a more positive εNd(540) value. Pampean pre-540 Ma granitoids form two clusters, one with TDM ages between 2.0 and 1.75 Ga and another between 1.6 and 1.5 Ga. Pampean post-540 Ma granitoids exhibit more homogenous TDM ages ranging from 2.0 to 1.75 Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. TDM values for the Ordovician Famatinian granitoids define a main interval of 1.8–1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger TDM ages ranging from 1.3 to 1.0 Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic εNd(540) values that range between 0.5 and −4 and TDM ages younger than 1.3 Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.Fil: Steenken, André. Universität Greifswald; AlemaniaFil: Lopez, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Martínez Dopico, Carmen Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Drobe, Malte. Universität Göttingen; AlemaniaFil: Wemmer, Klaus. Universität Göttingen; AlemaniaFil: Siegesmund, Siegfried. Universität Göttingen; Alemani

    The Cuesta de Rahue Basement Inlier (Southern Neuquén Precordillera, Argentina): A Devonian to Triassic polyphase orogenic record in northern Patagonia

    Get PDF
    New geological, structural, microstructural, and K-Ar biotite and illite geochronological data of igneous-metamorphic rocks exposed in the Cuesta de Rahue Basement Inlier are presented to reconstruct the Late Palaeozoic to Mesozoic tectonometamorphic and magmatic history of northwestern Patagonia. This block comprises a medium-grade metasedimentary sequence (Cuesta de Rahue Metamorphic Complex), Late Carboniferous granitoids and a low-grade metavolcano-sedimentary unit (Arroyo Coloco Metamorphic Complex). The Cuesta de Rahue Metamorphic Complex was deposited during the middle Palaeozoic and underwent Devonian low-pressure regional metamorphism, succeeded by the intrusion of granitoids at ca. 300 Ma. On the other hand, the Arroyo Coloco Metamorphic Complex record deformation and metamorphism at epizonal conditions (> 300 °C), constrained at ca. 232-199 Ma by K-Ar and XRD illite data. The Cuesta de Rahue Basement Inlier thus records a protracted orogenic evolution, recording Devonian metamorphism, Late Carboniferous-Permian Gondwanide tectonomagmatic processes, and Late Triassic deformation and metamorphism. Afterwards, this block was also affected by Mesozoic normal faulting and, finally, by Miocene-Pliocene Andean deformation. The latter was intimately related to reactivation of inherited basement fabrics, favouring a transpressional deformation regime.Fil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: González, Pablo D.. Servicio Geologico Minero Argentino. Delegacion General Roca.; ArgentinaFil: Alegre, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Geológicas; ArgentinaFil: Wemmer, Klaus. Universität Göttingen; AlemaniaFil: Varela, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Stipp Basei, Miguel Angelo. Universidade de Sao Paulo; Brasi

    Actividad de fluidos hidrotermales del Neoproterozoico tardío en el cinturón de Tandilia, Argentina

    Get PDF
    In the Barker - Villa Cacique area, Tandilia belt, alteration mineral assemblages were studied by petrography, XRD and EMPA at three different stratigraphic levels: (1) a phyllic alteration at the unconformity palaeoproterozoic basement-neoproterozoic sedimentary succession (TLPU); (2) an advanced argillic alteration in the Las Águilas Formation (middle level); and (3) a phyllic alteration on pyroclastic rocks of the Olavarría Formation (upper level). Special emphasize was placed on the chemical characterization of K-white micas and chlorites. Secondary K-white micas of altered migmatites, from the Las Aguilas and Olavarría Formations have a low paragonite content (Na* 9.5 km) for the entire sedimentary pile. Hot fluids would rise from deep-seated realms, metamorphic and/or hidden igneous sources. A correlation with a rasiliano thermo-tectonic event is hypothesized.En el área de Barker - Villa Cacique, Tandilia, se estudiaron mediante petrografía, DRX, y microsonda electrónica, las para- génesis de minerales de alteración de tres niveles estratigráficos diferentes: (1) alteración fílica de la discordancia basamento paleoproterozoico-secuencia sedimentaria neoproterozoica (TLPU); (2) alteración argílica avanzada en la Formación Las Águilas (nivel medio); y (3) alteración fílica en rocas piroclásticas de la Formación Olavarría (nivel superior). Las micas potási- cas y cloritas, de dichos niveles de alteración, fueron caracterizadas químicamente. Las micas potásicas de migmatitas alteradas y de las formaciones Las Águilas y Olavarría tienen un bajo contenido en paragonita (Na* 9,5 km) para el total de la pila sedimentaria. Los fluidos hidrotermales habrían ascendido desde ambientes profundos con una fuente metamórfica y/o cuerpos ígneos ocultos. Una correlación con un evento termo-tectónico Brasiliano es hipotetizada.Fil: Martinez, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Geológico del Sur; Argentina. Universidad Nacional del Sur; ArgentinaFil: Dristas, Jorge A.. Universidad Nacional del Sur. Departamento de Geologia. Catedra de Petrologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Geológico del Sur; ArgentinaFil: Van Den Kerkhof, Alfons M. . Geowissenschaftliches Zentrum der Universität Göttingen; AlemaniaFil: Wemmer, Klaus . Geowissenschaftliches Zentrum der Universität Göttingen; AlemaniaFil: Massonne, Hans J.. Universität Stuttgart; AlemaniaFil: Theye, Thomas. Universität Stuttgart; AlemaniaFil: Frisicale, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Geológico del Sur; Argentina. Universidad Nacional del Sur; Argentin

    The Conlara metamorphic complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating

    Get PDF
    The Conlara Metamorphic Complex, the easternmost complex of the Sierra de San Luis, is a key unit to understand the relationship between the late Proterozoic-Early Cambrian Pampean and the Upper Cambrian-Middle Ordovician Famatinian orogenies of the Eastern Sierras Pampeanas. The Conlara Metamorphic Complex extends to the east to the foothills of the Sierra de Comechingones and to the west up the Río Guzmán shear zone. The main rock types of the CMC are metaclastic and metaigneous rocks that are intruded by Ordovician and Devonian granitoids. The metaclastic units comprise fine to medium-grained metagreywackes and scarce metapelites with lesser amounts of tourmaline schists and tourmalinites whereas the metaigneous rocks encompass basic and granitoids rocks. The former occur as rare amphibolite interlayered within the metasedimentary rocks. The granitic component corresponds to a series of orthogneisses and migmatites (stromatite and diatexite). The CMC is divided in four groups based on the dominant lithological associations: San Martin and La Cocha correspond mainly to schists and some gneisses and Santa Rosa and San Felipe encompass mainly paragneisses, migmatites and orthogneisses. The Conlara Metamoprphic Complex underwent a polyphase metamorphic evolution. The penetrative D2-S2 foliation was affected by upright, generally isoclinal, N-NE trending D3 folds that control the NNE outcrop patterns of the different groups. An earlier, relic S1 is preserved in microlithons. Discontinuous high-T shear zones within the schists and migmatites are related with D4 whereas some fine-grained discontinuous shear bands attest for a D5 deformation phase. Geochemistry of both non-migmatitic metaclastic units and amphibolites suggest that the Conlara Metamorphic Complex represents an arc related basin. Maximun depositional ages indicate a pre- 570 Ma deposition of the sediments. An ample interval between sedimentation and granite emplacement in the already metamorphic complex is indicated by the 497 ± 8 Ma age of El Peñon granite. D1-D2 history took place at 564 ± 21 Ma as indicated by one PbSL age calculated for the M2 garnet of La Cocha Group. D3 is constrained by the pervasively solid-state deformed Early Ordovician granitoids which exhibits folded xenoliths of the D1-D2 deformed metaclastic rocks. Pressure-temperature pseudosections were calculated for one amphibolite using the geologically realistic system MnNCKFMASHTO (MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3). Peak metamophic conditions (M2) indicate 6 kbar and 620 °C. Late chlorite on the rims and in cracks of garnet, along with titanite rims on ilmenite and matrix plagioclase breaking down to albite suggests that the P-T path moved back down. Monazite analyses yield isochron Th–U–Pb ages ranging from 446 to 418 Ma. The oldest age of 446 ± 5 Ma correspond to a migmatite from the Santa Rosa Group. Monazites in samples from the La Cocha and the San Martin group crystallized at decreasing temperatures, followed by the 418 ± 10 Ma low-Y2O3 monazites in one sample of the la Cocha Group that was also obtained from a migmatite, and would likely mark a later stage of a retrograde metamorphism New CHIME monazite ages presented here likely represent post-peak fluid assisted recrystallization that are similar to amphibole and muscovite cooling ages. Therefore the monazite ages may represent a re-equilibration of the monazite on the cooling path of the basement complex.Fil: López de Luchi, Mónica G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Martínez Dopico, Carmen Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Cutts, Kathryn Ann. Universidade do Estado de Rio do Janeiro; BrasilFil: Schulz, Bernhard. Institute of Mineralogy; AlemaniaFil: Siegesmund, Siegfried. Universität Göttingen; AlemaniaFil: Wemmer, Klaus. Universität Göttingen; AlemaniaFil: Montenegro, Teresita Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin

    Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia : 40Ar/39Ar, 40K–40Ar mica and U–Pb zircon evidence

    Get PDF
    University of Buenos Aires (PICTUBACYT X183), CONICET and ANPCYT (PICT20131162) financial support is acknowledged.U–Pb SHRIMP zircon crystallization ages and Ar–Ar and K–Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U–Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar–Ar muscovite age of 182 ± 3 Ma and a K–Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U–Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K–Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K–Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K–Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian–Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198–182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern Patagonia during the Early Jurassic (Sinemurian–Pliensbachian) was responsible for the partial (re)exhumation of the mid-crustal Paleozoic basement along reactivated discrete NE–SW to ENE–WSW lineaments and the resetting of isotopic systems. These new thermochronological data indicate that Early Permian magmatic rocks of the Nahuel Niyeu block were below 300 °C for ca. 20 Ma prior to the onset of the main magmatic episode of the Late Permian to Triassic igneous and metaigneous rocks of the Yaminué block.PostprintPeer reviewe
    corecore