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ABSTRACT

The Conlara Metamorphic Complex, the easternmosiptex of the Sierra de San Luis, is a
key unit to understand the relationship betweenldte Proterozoic-Early Cambrian Pampean
and the Upper Cambrian-Middle Ordovician Famatin@ogenies of the Eastern Sierras
Pampeanas. The Conlara Metamorphic Complex exterttie east to the foothills of the Sierra
de Comechingones and to the west up the Rio Guaimgar zone. The main rock types of the
CMC are metaclastic and metaigneous rocks thairdneded by Ordovician and Devonian
granitoids. The metaclastic units comprise finenedium-grained metagreywackes and scarce
metapelites with lesser amounts of tourmaline s$ehignd tourmalinites whereas the
metaigneous rocks encompass basic and granitails.rohe former occur as rare amphibolite
interlayered within the metasedimentary rocks. gtenitic component corresponds to a series
of orthogneisses and migmatites (stromatite antéxiie). The CMC is divided in four groups
based on the dominant lithological associations: Ii8artin and La Cocha correspond mainly to
schists and some gneisses and Santa Rosa and Bz drecompass mainly paragneisses,
migmatites and orthogneisses. The Conlara Metarhapr@omplex underwent a polyphase
metamorphic evolution. The penetrative-$ foliation was affected by upright, generally
isoclinal, N-NE trending Bfolds that control the NNE outcrop patterns @ thifferent groups.
An earlier, relic $is preserved in microlithons. Discontinuous higlsfiear zones within the
schists and migmatites are related withwihereas some fine-grained discontinuous shearsband
attest for a [ deformation phase. Geochemistry of both non-migroanetaclastic units and
amphibolites suggest that the Conlara Metamorplimi@ex represents an arc related basin.
Maximun depositional ages indicate a pre- 570 Mpadition of the sediments. An ample

interval between sedimentation and granite emplaoénin the already metamorphic complex
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is indicated by the 497 +8 Ma age of El Pefion iggab;-D, history took place at 564 + 21 Ma
as indicated by one PbSL age calculated for thg&snet of La Cocha Groups 3 constrained
by the pervasively solid-state deformed Early Ordew granitoids which exhibits folded
xenoliths of the PD, deformed metaclastic rocks. Pressure-temperaggadosections were
calculated for one amphibolite using the geoldgiceealistic system MNNCKFMASHTO
(MnO-Ng&0-Ca0-K0-FeO-MgO-AbOs-SiO,-H,O-TiO,-Fe0s). Peak metamophic conditions
(My) indicate 6 kbar and 620 °C. Late chlorite on tiings and in cracks of garnet, along with
titanite rims on ilmenite and matrix plagioclasedking down to albite suggests that the P-T
path moved back down. Monazite analyses yield ot h—U—Pb ages ranging from 446 to
418 Ma. The oldest age of 446 + 5 Ma correspond to gmatite from the Santa Rosa Group.
Monazites in samples from the La Cocha and the Nbamin group crystallised at decreasing
temperatures, followed by the 418 + 10 Ma low®¥ monazites in one sample of the la Cocha
Group that was also obtained from a migmatite, aodld likely mark a later stage of a
retrograde metamorphism New CHIME monazite agesemted here likely represent post-peak
fluid assisted recrystallisation that are similar damphibole and muscovite cooling ages.
Therefore the monazite ages may represent a rébegtion of the monazite on the cooling

path of the basement complex.

Keywords: lithology-geochemistry metaclastic rogeschemistry and metamorphism

amphibolite-CHIME monazite dating-Conlara MetamacpBiomplex
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1. INTRODUCTION

The Conlara Metamorphic Complex, the easternmosiptex of the Sierra de San Luis, is a

key unit to understand the relationship betweenldte Proterozoic-Early Cambrian Pampean
and the Upper Cambrian-Middle Ordovician Famatin@ogenies of the Eastern Sierras
Pampeanas (Fig.1a,b). The protholits of the Neaepoaoic -early Ordovician metamorphic
complexes that make up the Sierras were depositeag athe southwestern margin of
Gondwana. Provenance of the metaclastic unitseelite complex to arc basins (Lopez de
Luchi et al., 2003) with maximum depositional agéder than ca. 580 Ma (Steenken et al.,
2006) exhibiting no Pampean inheritance. U-Pb dagige constrains the peak metamorphism
to 564 + 21Ma (Siegesmund et al., 2010) and segmriéd evolution from the rest of the
complexes of the Sierra de San Luis that underweht the Famatinian orogeny. In addition
among the metaclastic units the Conlara Metamor@limplex encompasses banded schists
(i.e., La Cocha Group) (Fig.1b), a particular uhit appears in the northeastern corner of the
Sierra de Coérdoba (i.e. Tuclame Formation), in$ierra de Ancasti (i.e. Ancasti Formation)
and also in the Puncoviscana Formation (Steenkah, @006, Drobe et al., 2009) located north
of the Sierras Pampeanas.

The Sierra de San Luis which comprises a Cambra¥itidn metamorphic basement intruded
by Ordovician and Devonian plutons (Fig 1a, b), aodsists of three major NNE trending
metamorphic complexes: the Nogoli (NMC), PringlE81C), and Conlara (CMC) complexes
(Sims et al.,, 1997, 1998). The complexes areraggmhby the two narrow phyllite belts of the
San Luis Formation (SLF) (Prozzi and Ramos 1988 bhasement complexes of the Eastern
Sierras Pampeanas were structured by three orogmmeants: the late Proterozoic-Early
Cambrian Pampean, the Upper Cambrian-Middle OrdmviEamatinian and the Middle -Upper
Devonian Achalian. These events were interpretdebtthe result of subduction and continental
collision of several terranes along the margin @n@vana. The opening of Carboniferous
continental basins marked the end for the ductfornation and the compressive tectonic
movements (Ramos et al., 1986, Ramos 1988, Kraeinal.,, 1995; Sims et al., 1997,1998;
Rapela et al.,, 1998, 2016, Steenken et al., 20086,22008; Otamendi et al., 2020, and
references therein).

Although investigations on the magmatic, metamar@md structural evolution, provenance,
geodynamic setting of the protoliths of the metgrhar basement and metalogenesis of the
CMC were performed (Lépez de Luchi 1986, Ortiz 8aat988, 1996, Ortiz Suérez et al.,
1992; Llambias et al., 1996, 1998; Sims et al.,719998; von Gosen 1998; Lopez de Luchi et
al., 2003; 2007, 2008, 2009, 2018; Steenken eR@04, 2006, 2008, and references therein),

few studies have focused on a comprehensive stutthe €onlara Metamorphic Complex.
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The aims of this paper are (1) to present a congmstee lithological characterization of the
Conlara Metamorphic Complex, (2) provide P-T caaists for the some units by analysing the
relationship between metamorphism and deformag®nto present CHIME monazite ages for
different units of the CMC and discuss time constsafor its evolution, (4) to decipher the

significance of the CMC in relation to the restloé Eastern Sierras Pampeanas

2. GEOLOGICAL SETTING

The main metamorphic complexes of the Sierra deLseés (Fig. 1b) are mainly built up by

greenschist to granulite facies metaclastic andaigetous rocks. The NMC comprises
amphibolite facies gneisses, felsic orthogneissesminor mafic gneisses and is intruded by
monzonites and granites (Sims et al., 1997, 1998 z@&lez et al., 2004, Steenken, et al., 2006).
A SHRIMP °*®Pbf?*Th monazite age of 478+ 4 Ma was reported for anmaiife from the
northern part of the complex (Steenken et al., 20Diee PMC is made up by greenschist facies
to amphibolite facies gneisses, mica-schists, abglité intruded by mafic and felsic plutons.
Locally, granulite facies which develops in theinity of the numerous Late Cambrian back-arc
mafic bodies (Sims et al., 1997; Hauzenberger.e28D1, Steenken et al., 2006) is associated
with a near isobaric P-T path and was dated asCatabrian (Steenken et al., 2008) based on a
concordant U/Pb zircon ages of 498+10 Ma. The Sas Eormation (Prozzi and Ramo,s 1988)
consists of meta-quartz-arenites and phyllites,omilack shales, scarce conglomerates, and
acidic volcanic rocks (Hack et al., 1991, von Go%888). Available radiometric ages for acidic
metavolcanic layers yielded a U-Pb zircon age @& %212 Ma while detrital zircon grains
indicated a maximum deposition age of ca. 515 Mad® Orillo et al., 2019 and references
therein).

The Conlara Metamorphic Complex (CMC), the eastestmmetamorphic complex of the
Sierra de San Luis is limited to the west by the Buzman shear zone whereas its eastern
margin to the Sierra de Comechingones (Sims efl@87) is controlled by the Las Lajas and
Guacha Corral shear zones (Siegesmund et al., 26id)) 1b). The main rock types of the
CMC are metaclastic and metaigneous rocks thairgngded by Ordovician and Devonian
granitoids. These rocks were studied since dectides the pioneer studies of Pastore and
Gonzélez (1954), up to more recent studies by Deblad. (2009, 2011), Lopez de Luchi (1986),
Lopez de Luchi and Cerredo (2001), Lépez de Lutlail.e(2003, 2008, 2009, 2018), Morosini
et al. (2019), Ortiz Suérez (1988,1996), Ortiz Badt al. (2009), Siegesmund et al. (2010) and
Steenken et al. (2004, 2006, 2008) and referehegsih.

The Conlara Complex was originally defined by Sietal. (1997) to encompass the sector of
the Sierra de San Luis south of 32° 40" and eashefGuzman shear zone, including the
metamorphic basement of the El Morro, Tilisaraod & Estanzuela hills, as well as the

southern tip of the Sierra de Comechingones. Taed®rs consider that the complex is mainly
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made up of medium to high grade metapelitic andapsgtmmitic gneisses and schists, minor
calc-silicates, amphibolites and marbles and welletbped pegmatites. Later, the Conlara
Complex was renamed as Conlara Metamorphic Confpi@xez de Luchi and Cerredo, 2001,
Steenken et al., 2004, 2006) and extended to iadiuel metamorphic rocks north of the Renca
batholith, thus encompassing banded schists aedyfsined schists.

The main rock types of the CMC are schists and édusdhists, biotite gneisses, migmatites and
orthogneisses. Tourmalinites, tourmaline-schists|c-silicatic rocks related with W-
mineralization and amphibolites are also locallgognized. The mineral assemblages of the
metaclastic rocks are characterized by the paotitliagnostic paragenesis, in fact biotite and
rare relic garnet are the only AFM phase prese@pélz de Luchi et al., 2008). L6pez de Luchi
and Cerredo (2001) proposed a polyphase defornatevrolution of the metamorphic units
that encompasses at least three ductile deformptiases which produced foliations, banding,
folding and localized high-temperature shear zofés penetrative, dominant foliationy, S
locally associated with banding in some metaclastiists is related to the second deformation
(Dy). A relic § is preserved in microlithons as biotite polygorats or as thin folded
leucocratic veins with Saxial plane cleavage. The penetratiyddiiation is in turn affected by
upright, generally isoclinal, £folds with N-NE/S-SE axial planes and an assodi&eThin &
1-2mm) biotite-quartz mylonitic shear zones relatedD; are occasionally found. Late
Cambrian and Early Ordovician large discrete goaaiit(e.g., EI Pefion Granite) and gabbroid
(e.g., Las Cadas, Morosini et al., 2019) plutond sheet-like stocks (e.g., Rio de la Carpa
Granite; Llambias et al., 1996) intruded the CMQimy D; after the peak metamorphism.
Therefore, they are not considered as part of thgrade path of the Complex.

Geochemical studies of the metaclastic rocks of GhC showed that the protoliths were
mainly greywackes, semipelites and subordinateiegealvith compositional features typical of
Phanaerozoic active margin settings. Immobile teleenents such as La, Th, and Sc contents
and ratios suggest continental island arc settfhgpez de Luchi et al2003). Steenken et al.
(2004, 2006) and Drobe et al. (2009, 2011) fountbfgic and geochemical similarities between
the CMC and the Puncoviscana Formation, the Eaalyl@ian key unit of the Eastern Sierras
Pampeanas to the north of Sierras de Cérdoba.

The maximum depositional age of the protolith & @onlara Metamorphic Complex is at ~586
Ma (Steenken et al., 2006). However, the youngesitdl zircon of the dataset yielded 520 + 6
Ma. More recently, Rapela et al. (2018) found thme Ediacaran detrital cluster and a very
small population of Late Cambrian zircon ages. &mplacement of the El Pefidn Granite (497
+8 Ma; U-Pb zircon age), that hosts enclaves frloen:-banded schists of the CMC, constrain
the peak metamorphic conditions to the PampeanddrofSteenken et al., 2006, 2008)

3.LITHOLOGY OF THE CONLARA METAMORPHIC COMPLEX



173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208

The metamorphic complexes of CMC comprise fine tdimm-grained metagreywackes and
scarce metapelites that make up schists, gneigsgsmegmatites with lesser amounts of
tourmaline schists and tourmalinites and metaigaeodks that encompass basic and granitoids
rocks. The former occur as rare amphibolite inyentad (likely emplaced as sills within the
sedimentary pile) within the metasedimentary levélge granitic component corresponds to a
series of orthogneisses and migmatites which urelgrvall the prograde metamorphic
evolution of the CMC being emplaced betwegA(Lopez de Luchi 1986, Lopez de Luchi et
al., 2003, 2008). In several areas gneisses tramsily grade into migmatites due to an increase
in leucosomes. Migmatites differ on the mineral gog@nesis and the different types of
relationship between leucosome/mesosome/paleosoone Heterogeneous stromatitic type,
with leucosome rarely exceeding 30-40% comparedidtexite. In this study we consider as
migmatites rocks in which evidence of a melt phisaecognized independently of the
identification of melt-producing reactions In sétel images gneiss and migmatites are
recognized as uniform medium gray areas in whianigpid as well as pegmatites might be
observed. Pastore and Gonzalez (1954) includex ttaecks within the gneissic micacites and
mixed rocks while other authors named them migesi{iGordillo and Lencinas, 1979).

The CMC is divided in four groups (Fig. 1a) basedtiee dominant lithological associations:
San Martin (Fig 2a, 3a) and La Cocha (Fig. 2b¢8iblespond mainly to metaclastic lithologies
and Santa Rosa (Fig. 2c¢, 3c) and San Felipe (Kig.38) encompass mainly paragneisses,
migmatites and orthogneisses. The La Cocha GroypaiBally equivalent to Las Aguadas
Metamorphic Complex of Ortiz Suarez (1988, 1996@)e verall arrangement of these four
groups could be likely controlled by g Belated major structure (fold?) governed by N-Misa
(Lopez de Luchi et al., 2008)

3.1.THESAN MARTIN GROUP

The San Martin Group (SMG) is composed of fine edimm grained schists (Fig. 2a, 3a) that
are predominantly metapelites with subordinate psgtenmites and scarce tourmalinites. The
SMG appears as two NNE belts at both sides of @elpélt of the migmatites of the Santa Rosa
Group (Fig. 1la) and hosts pegmatites, Ordoviciad Bevonian plutons (Las Chacras, El

Telarillo and El Hornito plutons, Fig. 1a). It ioteworthy the profuse development of thin

pegmatite sills as well as fine to coarse grainathgtxtourmaline leucogranites and locally

biotite granitoids like the Rio de la Carpa Grai@@ntacts with the La Cocha group are covered
whereas an increase of psammitic layer leads tsggeand migmatites along the border of the
western belt. The eastern belt (Fig. 1a) is maimgde up of biotite+quartz +muscovite

+plagioclase(oligoclase) fine grained schist (Figb) moderately to highly interlayered with

almost pure gquartz and tonalite to granite layérganiable thickness. In the western belt (Fig.
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1a) north of the Las Chacras-Potrerillos Batolitte dominant mineral paragenesis is quartz +
biotite+muscovite+plagioclase (oligoclase-albité)urmalinetapatite and subordinately biotite
+quartz+muscovite * tourmaline and biotite +quaptagioclase + garnet. Martinez et al.
(2015) describe scarce thin amphibolites and csilomatic layers in this belt. Immediately
south of Quines thin tourmalinites layer are foid). 4c). Some fine grained schists (Fig. 4d)
appears interlayered with the banded schist oLth€ocha Group or in scarce occurrences as
discontinuous rafts in the migmatites of the Sé&tiaa Group.

These fine grained schists (Fig. 4a, b) are chamaet by a continuous, $oliation defined by
biotite and muscovite flakes set in a granoblastigtrix of fine-grained (up to 0.1 mm)
granoblastic quartz with variable content of sodiunch oligoclase. In other cases, the
continuous gfoliation is made up only of parallel biotite fle&k Muscovite also forms blocky,
randomly-oriented porphyroblasts up to 2 mm acrérsssome localities fibrolite/sillimanite
appears inside the muscovite blasts as aggredetiearte crenulated and probably correspond to
a preexisting parallel foliation that was overpgihtduring an event in which sillimanite was
retrogressed. The local preservation of a centirstale primary sedimentary compositional
layering defined by varying biotite/plagioclase izateads to a metamorphic banding of
alternating metapelites and metapsammites witherdifft biotite content. The,/S; foliation
(Lépez de Luchi, 1986, Lépez de Luchi and Cerr&2if)1) is approximately parallel to this
banding but along strike the metapsammitic layees loudinaged. Locally this foliation is
deformed into weak crenulations (Fig. 4b) at a laggle to this banding, and the biotite shows
kink-bands.

In some cases the fine-grained schists show antameasing foliation defined by oriented
biotite, muscovite and chlorite along with quartagioclase (Ars) polygonal aggregates.

The psammitic (0.3-0.4 mm) fine-grained schist tayeso show a continuous variable defined
foliation -oriented green biotite and scarce mugeenalong with quartz and plagioclase gAn
33). Locally oriented brown biotite (occasionally ydarge up to 5mm) and polygonal quartz-
plagioclase aggregates define the foliation. Instvaf the samples of the psammitic fine-
grained schist conspicuous idioblastic up to 0.18mpatite crystals are present.

Martinez et al. (2015) describe a transition froestmo east from the fine grained biotite schist
to gneiss north of Villa Praga. The transition isca@mplished by an increment of
“metapsammitic” rocks with variable content of pladase and high contents of biotite and
quartz. In some examples microcline accompaniggqubase modal increase whereas apatite is
widespread. North of San Martin on the road to @slilmn alternance of metapelitic and
metapsammitic layers is observed.

A distinctive feature of the San Martin Group ise tprofuse development of granitoid
leucosomes either fine grained to pegmatitic gi@sitls or fine to medium grained tonalitic to

granodiorite (Fig. 3a). Granites are made up byrtquAagioclase,-microcline, muscovite with
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garnet, apatite and tourmaline as accessory mgerhe tonalitic-granodiorite layers are made
up of quartz-plagioclase-biotite-muscovite. Somen,thdiscontinuous, partly discordant
leucocratic veins composed of recrystallized eqaaattz aggregate are also present.

The dominant structure is a NNE-trending east diggdbliation (S) that is locally folded by
decametric to metric-scale open to tight)(Folds (Fig. 2a, 3a) with development of a
discontinuous Saxial plane foliation (Fig. 4d). Two folding phasare depicted.,$esults from
the isoclinal (k) folding of a $ fabric that is recognized by the development ofidios,
intrafolial folds or unrooted hooks of metapsammié®d leucocratic veins; Folds affects Ms-
Grt- tourmaline granitoids that were emplaced valdsar cut contacts parallel tg §ig. 3a).
Aggregates of biotite-muscovite-chlorite wrapped thg S foliation could replace former
aluminous porphyroblast that would have grown ptiedaS development. Large muscovite
plates (Fig. 4a) overprint the $liation and turned into mica fishes due tofélds. Crenulated
sillimanite aggregates inside the muscovite blatds suggest that,Folding as well as $
development was associated to retrogression opeai& metamorphic assemblages. Along the
limbs of the k folds granitoids are boudinaged and stretched. &g These sills are folded
and thicker in the eastern flank of the folds whiklkonsistent with the western vergence of the
axial plane of the last folding phase. Some thisgahtinuous, partly discordant leucocratic and
discrete tonalitic leucocratic layers draw operd$owhose axial planes are parallel to the S
foliation are recognized.

A late shearing is responsible for the developnoémiagioclase sigma clasts, muscovite fishes
and kinks in biotite and muscovite. Associated witis shearing, very fine-grained (0.04 mm)
quartz and very tiny, oriented biotite-chlorite nolselts are developed. The geometry and

grain-size of micro-shear could suggest extensioreadulation cleavage.

3.1.2.LA COCHAGROUP
The La Cocha Group (LCG) forms a roughly submenidialt within the north central area of
the CMC (Fig. 1a). The dominant rock type are bdmsishists (Fig. 2b, 3b) locally interlayered

with fine-grained schists, occasionally accomparigdhin layers of tourmalinites, tourmaline
schists and amphibolites The LCG hosts both Ordmviand Devonian granitoids. The former
are represented by El Pefidn Granite, El Saladdz(Ortarez, 1988,1996), Los Alanices and La
Tapera pluton (Lopez de Luchi, 1986, Lopez de Laetd Cerredo, 2001) among others and a
well developed suite of huge pegmatites, whereafkinca batholith is the intruding Devonian
unit (Fig. 1a).

3.1.2.1Banded schists
The most impressive outcrop feature of these bisiihists is represented by a metamorphic

banding composed of 0.5-2 cm alternating whitishrtpaplagioclase-rich and gray biotite-rich
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layers which is affected by upright, generally igwa, D; folds associated with a steeply-SE
dipping NE-striking $foliation.

S, foliation is represented by the metamorphic bag/thiyering which is parallel tos&long &
limbs and normal to Sin F; hinge zones (Fig. 5a). The present foliatienréults from the
folding of the $ foliation by D; folds. S foliation that is represented by the metamorphic
banding/layering (Fig 5a, b) is parallel tpefong k limbs and normal to39n F; hinge zones
(Fig. 5b).. An earlier, relic S(Fig. 5a) is preserved in some leucocratic domamdiotite
microfolds. There is a progressive increase inngs&e from $ biotite, to polygonal
plagioclase-quartz aggregates and biotite defithieds foliation and banding.

Mica rich domains are made up by green biotitegiolclase, scarce quartz plus opaque
minerals, apatite and zircon. In some sector a $yayarnet (Fig. 5¢) locally surrounded by
plagioclase is observed. The garnet contains syrnuakS-shaped curved trails of inclusions
(epidote, quartz, ilmenite), suggesting syntectgmawth. Garnet is partially retrogressed along
grain boundaries to chlorite and to sericite-cldomainly along cracks.

Quartz rich domains are made up of plagioclase{A#, quartz and some biotite. Relic garnet
is locally found in these domains. Plagioclaseasomorphic. Relic Fmicrofolds are defined
by the relic biotite 1 in the quartz domains (F5g). Quartz blasts are flattened at axial ratios of
~1:2 with grain boundaries denoting migration pesceChlorite appears either in small flakes
associated with biotite or in large clots that vebrdsult from the retrogression of garnet parallel
to the $ fabric.

Muscovite blasts (Fig. 5d) in plates larger tham #iverage grain size are observed in most of
the outcrops. These blasts define muscovite fishese undeformed according to their location
in the K folds. In some sectors rutile, up to 0.7 mm iseobad. Apatite with pleochroic cores

and rutile are common accessory minerals.

3.1.2.2 Fine grained schists

Different textural types of fine-grained schistdF#dd) are recognized when interlayered with
the banded schists. One type of fine-grained sdiast a spaced foliation with alternating
phyllosilicate-rich and feldspar-rich layers. Ttoerher is composed of oriented greenish brown
biotite and muscovite and polygonal quartz-plagieel $ is defined by oriented biotite and
muscovite which alternate with quartz-plagiocla&e§ o rich layers. The quartz rich domains
are composed of coarser grained oligoclased/fand quartz aggregates. Minor tourmaline and
idioblastic apatite with pleochroic cores (blug¢d) are accessory minerals in variable amount.
Some biotite polygonal arcs remain enclosed amongriscovite or biotite. Robust, slightly
folded or undeformed post-foliation ramdomly distiied muscovite is also observed.

Another type of fine grained schist is charactatiby a continuous foliation defined by biotite

and muscovite flakes set in a granoblastic matfiguartz and scarce plagioclase. Oversized
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biotite is observed in some examples whereas mitsdolasts are abundant. In some localities
aggregates of quartz, sericite and chlorite that replace former andalusite porphyroblasts are
wrapped by the Sfabric. Maisterrena (1984) mentioned similar aggtes associated with

staurolite porphyroblasts.

3.1.3.TOURMALINITES AND TOURMALINE SCHISTS IN THE A COCHA AND SAN
MARTIN GROUPS

The tourmalinites represent a conspicuous albaitcsclithology within the La Cocha and San
Martin groups. The tourmalinites are fine grainedks which occur as 0.5-2 m thick layers
within the sequence of fine grained muscovite-teaschists associated with the banded schists.
Unfortunately, the poor outcrop conditions, makelifficult to estimate precisely the along
strike length. No clear relation was observed sanith scheelite-bearing calc-silicate rocks in
the studied outcrops. Tourmaline-rich rocks alsouodn contact with lenticular granitic and
pegmatite bodies.

The tourmalinites exhibit a well developed plarasrc at outcrop scale. They are fine grained,
(usually <1 mm), gray to black with a silky lust@md variable amounts of tourmaline (up to
>90% by volume). The tourmaline crystals are gdheraligned. Textural variations are
common. Some of the tourmalinites show a very tkirimm) layering in which tourmaline-
rich layers alternate with quartz-muscovite graastit layers. Quartz and variable amounts of
plagioclase, muscovite and biotite are the mostndhot minerals associated with zoned
tourmaline in the tourmalinites. Some layers con&ppreciable amounts of apatite (up to 5%
by volume) and rutile (up to 2% by volume). Smakligs of zircon and monazite are accessory
minerals. Muscovite and some opaque mineral shaet®riented in the foliation plane. The
layering is coplanar to the main/S; foliation. Some tourmalines show a distinctive icgit
zoning with subhedral to euhedral, reddish-orarmgsvb (20- 30um) cores (probably detrital
tourmaline) and bluish green rims. Apatite formgragates of subhedral grains or is isolated.
In some thin sections lenses or veins of coarseepaleformed quartz are observed.
Tourmaline rich biotite-muscovite schists are chamazed by variable concentrations of
tourmaline, normally less than 10% by volume. Cs#xg major minerals are mica
(muscovitetbiotite), quartz and plagioclase. Acoegaminerals include titanite, rutile, and
zircon. Tourmaline occurs normally as: fine to vBng-grained (<20@m in length), subhedral

to anhedral crystals disseminated within a foliataedrtz-micaceous matrix.

3.1.4THE SANTA ROSAGROUP
The Santa Rosa Group (SRG) displays a large N-hsiin, in two belts one located along the

eastern border of the Sierra and another centiabbeiscontinuous outcrops that extends all

along the CMC, partially enveloping the SMG and LGBg. 1a).The SRG encompasses
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medium grained biotite gneisses with leucocratiartiu and granite veins and stromatitic
migmatites (Fig. 2c, 3c). The stromatitic migmatitecally show centimetric up to 5 m long
amphibolite lenses with sharp contacts and a panedr foliation parallel to that of the
migmatite. These mafic rocks are usually injectgdelicocratic veins that are folded with axial
planes parallel to those of the host migmatitesdme cases coarse grained pegmatites dikes are

also observed.

3.1.4.1Gneisses

Medium to coarse grained dark grey biotite gneisaes heterogeneous and grade into
stromatites. The grain size of the gneiss incretseards the south of the group but it is always
finer than the locally accompanying stromatitese Tharsening of the gneiss is coupled with a
decreasing intensity of foliation development. TReschistosity/foliation is continuous and
slightly anastomosed (Fig. 6a) and is defined ey referred orientation of biotite or spaced
and defined by the alternance of plagioclase riuth biotite rich domains Locally the tightly
folding of the $ fabric is observed (Fig. 6a) therefore the domin& spaced or
continuousfoliation results from the transpositairs,. Quartz plagioclase veins of up to 1 cm
thick are parallel to S Locally in high-strain domains ,Soliation is overprinted by a
discontinuous $locally in high strain domains.

Gneisses are medium- to coarse-grained with grastibllepidoblastic textures and are
composed of the mineral assemblage quartz+plagettaotiterapatitexzircon+rutilo
tmagnetite (Fig. 6a). Accessory minerals includatiég and zircon. Muscovite blasts overgrow
the folded foliation. Quartz is xenoblastic and whcevidence of grain boundary migration
recrystallization and chessboard patterns. Plaagecinormally oligoclase is xenoblastic to
subidioblastic. Subgrains and glide twinning arsesbed. Biotite is greenish brown, subhedral
and define the Sfabric. In some gneisses, tourmaline as dissesuhatibhedral to anhedral

crystals may constitute up to 2-3% by volume.

3.1.4.12 Stromatites

Stromatitic migmatites (Fig. 2c, 3c) are associatgith the gneisses and appear as isolated
outcrops to the north of the Renca batholith egjliganear its NE contact or in tectonic contact

with the banded schists of the La Cocha Group albagontact of the eastern belt (Steenken et
al., 2006). Elsewhere the type of contacts eithién the schists or the gneisses is not easy to
solve since they are partially covered. Stromat#es coarser grained than the biotite-gneiss.
Leucosome content is variable at the outcrop g€ade 2¢) and in most cases its felsic minerals
are coarser grained than the mafic phases of theosoeme (Fig. 3c). The leucosomes are
generally rimmed by thin, discontinuous melanosorard range from concordant through

slightly to strongly discordant to the, $liation (Fig. 2c). The concordant leucosomed tha
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constitute up to 20-30 %vol and exhibit a weaklyedeped and slightly wavy planar fabrics,
are variably pytgmatically- or isoclinally-folde@aording a pre-Stiming (Fig. 2c). In places,
younger leucosomes cut the deformed leucosomes3gjg

The stromatitic migmatites are tonalitic and congubf quartz, plagioclase (oligoclase-
andesine), biotite and muscovite together withr@line, apatite, zircon and scarce sillimanite
as accessory minerals. Rocks are coarse to medaimed and characterized by the alternance
of 0.5-5 cm thick layers of medium- to coarse-gedir{Fig. 2c, 3c), strongly recrystallized
granitic leucosome and biotite rich mesosome wathes layers of paleosome (gneiss). Textures
vary from granoblastic for the leucosome to graemeoblastic for the mesosome/paleosome.
In most of the localities there is no preservatdiD, structures. Bfabrics overprint D (Fig.
6b).

In the leucosome, plagioclase is mostly fresh wiififiuse normal zonation and occasionally
deformational twins. Quartz is anhedral, limpidhwitndulose extinction to parallel subgrains
and locally grain boundary migration textures. Ghesrd patters in the central part of relict
crystals document high temperatures sub-solidusrehgtion. Biotite is light brown/honey-
yellow to greenish brown and partially replacedtimy muscovite and epidote. Xenomorphic
plagioclase is mostly undeformed but shows inteseseitisation. The melanosome is made up
of quartz, plagioclase and biotite. Biotite togetléth elongated quartz crystals and scarce
muscovite define the,Joliation. Fibrolite is occasionally present asated with biotite and
also as relic fibrolite inside muscovite blastst thaerprint the Sfoliation (Fig. 6¢). Unmelted
biotitic schists are interlayered in the migmataieas. In the Santa Rosa Group discrete shear
belts related with the green-schisf Bverprint (Lopez de Luchi et al., 2008) either riat
generate a penetrative fabric (Fig. 6d) controlliegjograde assemblage of chlorite and sericite
or in highly strained areas define an anastomosktibn by muscovite-epidote or muscovite-

biotite (small)-epidote assemblages.

3.1.5.THESAN FELIPEGROUP
The San Felipe Group (SFG) shows a more restriggegraphical distribution mainly within

the southern half of the CMC (Fig 1la), especificailh the Sierra de San Felipe and
surroundings and in a wider area from south ead®asdo Grande up to La Totora Granite
(Fig.1a). This group partially hosts the Devoniam Totora and Renca batholiths. These rocks
that are highly heterogeneous and grade from oniieg to diatexite and to stromatite with
granitic leucosomes (Fig. 2d, 3d), differ from B&nta Rosa Group because diatexites are more
abundant and exhibit retrograded cordierite, gaamet sillimanite. Rafts of biotite gneiss are
often preserved in the stromatitic type. In caséere the spaced foliatior, 8f the biotite
gneiss exhibits the tightly folded S1 foliationetimain foliation of the migmatites wrap around

them suggesting a syn;Diming of the leucosome development. Leucosomerkayf these
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431 heterogeneous migmatites have variable width (o@ttic to decimetric) and form an
432 interconnected net of veins that thins out alorgdtiike or are oblique to the foliation. When
433 the leucosome become thicker (up to 10 cm), theyohlique to the metamorphic layering and
434 may eventually coalesce to form discordant dikes@mcordant sills that grade into the granite
435 orthogneiss. Locally, the melts appear to have abégt along foliation planes and accumulated
436 within shear bands or in boudin necks suggestiag tielting and/or melt movement in the
437 rocks was coeval with deformation.

438 In the stromatites, discrete light-colored leucossmary from rounded blebs less than five
439 millimeters across to pods stretching several oeters, elongated parallel to the dominant
440 foliation (Fig. 2d, 3d). Many of the leucosomes ayggmatically- or isoclinally-folded. The
441 diatexites show also variable textures from roakswvhich distinct leucosome /melanosome
442  boundaries are recognized. i.e. schlieren diatégit®cks with poorly-defined boundaries, i.e.
443 massive diatexites that grade into orthogneisdassd diatexites often possess a very consistent
444  grain size for both the felsic and mafic minerdgy( 7a). Although in other cases felsic and
445 mafic minerals are evenly distributed, localizedha@ntrations of mafic minerals are present..
446 Lenses of granitic orthogneiss exhibit irregulante@ts against the stromatitic migmatites

447 The leucosomes show a medium-grained blastic tex&md lobated intergranular contacts
448 consisting of quartz, plagioclase and biotite avahlly sillimanite and K feldspar, with apatite,
449 zircon and Fe-Ti oxides as accessory minerals (Fig). Quartz appears in large,
450 equidimensional amoeboidal crystals that exhibising boundary migration recrystallization
451 and includes biotite and apatite. Contacts withKHeldspar crystals are lobated. Myrmekitic
452 intergrowths are present in the borders in contatlt the plagioclase. Sillimanite (Fig. 7b)
453 appears as thin prisms inside muscovite blaststreagrow the sfoliation.

454  The mesosome is made up of lepidoblastic and gtastib layers. The micaceous layers are
455 made up of somewhat oversized biotite blasts ti@tide plagioclase and opaque minerals (Fig.
456 7c). The granoblastic layers are composed of qualtmioclase, biotite and very scarce
457  cordierite and accessory minerals. Quartz shovge lgrains with lobated edges on the quartz-
458 feldspathic microlithons, but also quartz ribbone ¢ocally parallel to the biotite layers.
459 Plagioclase is found as relictic porphyroclasts ahdws tapered twins. In some examples
460 recrystallization of plagioclase into mosaics ofeyopolygonal individuals with triple
461 junctions at 120° is observed. Cordierite occurgregular interstitices as small crystal with
462 scarce or no pinnitization.The melanosome is remtesl by medium grained schlieren
463 composed of biotite with lepidoblastic texture, reeasillimanite and garnet. Discrete shear
464 zones (Fig. 7d) with a recrystallized quartz mosand tiny flakes of biotite appear in some
465 localities

466

467 3.1.5.10rthogneisses
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Discrete orthogneissic bodies rarely reach soms- tereters, more often they form decimeter
sized layers interbedded with the host migmatifesese rocks corresponds to the earlier
granites of Lopez de Luchi et al. (2008). Rocks slightly pinkish light to medium grey
equigranular medium to coarse granitoids that rafige tonalite to syenogranite with a
predominance of monzogranite. Minerals are quanterocline, plagioclase, biotite, muscovite
and in some cases garnet, scarce sillimanite artiecibe. Accessory minerals include allanite,
apatite, tourmaline and zircon. Biotite is homogeredy distributed and defines a foliation that
is parallel to the Sfabric of the migmatites.

Rocks are typically banded with irregular distribatof S oriented biotite which locally forms
mm to cm large clots, plagioclase is slightly msoelic than in host schists, rarely garnet occurs
surrounded by retrograde postpfagioclase coronas (Fig. 7e). Minor amounts .adl@minum
silicate (generally sillimanite) locally occur iissociation with albite indicating that conditions
of first sillimanite isograde (upper amphiboliteiss) have been attained.

Quartz is anhedral and exhibits static recrystilim indicated by polygonal aggregates of
equant quartz crystals whereas in other sectoiia gundary migration recrystallization and
chess board patterns are observed. Anhedral toeduddhplagioclase (oligoclase-andesine)
exhibit borders corroded by quartz, glide twinnamgd locally subgrains. Inclusions of biotite,
drop-like quartz and scarce K-feldspar are seeg. (Fi). Locally some needle sillimanite is
observed in relation with muscovite blasts. K-felas microcline is anhedral, locally interstitial
and show flame perthites. Fine grained inclusiohglagioclase were observed. Myrmekite
intergrowths are common between coarse grainedoglage and K-feldspar. Biotite appears in
discontinuous rafts or as small grains inside #lespars. In areas in which mylonites are
developed, K-feldspar and plagioclase that extsbligrains are wrapped by g Surface. A

discontinuous foliation is defined by the alignmehbiotite rafts.

3.2. PROVENANCE OF THE METACLASTICUNITS

Samples and analytical techniques

The metamorphic rocks that were studied for promeaacomprise schist of the La Cocha and
San Martin  groups with metamorphic assemblages tleatrespond to quartz-
andesine/oligoclase-biotitetmuscovite tgarnetteudihd scarce chlorite.

Twenty four whole rock major and trace elementadat presented (Table 1). This study is
based on eleven new whole rock major and traceegleahemical analysis, our own published
data (Lépez de Luchi et al., 2003, Drobe et al02®@011) and three samples from sillimanite
schists from Sierra del Morro taken from Sims e{(H97). Samples were selected considering
no evidence of veining or open-system behaviouta®sgere recalculated to an anhydrous base
and plotted on classification, provenance and téctdiscrimination diagrams. See Appendix 1

for analytical procedures.
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3.2.1 WHOLE ROCK GEOCHEMISTRY

Whole rock chemical composition of (meta)sedimeotspled with detrital zircon ages, Nd and

Sr isotopic composition might allow to track theisme and tectonic setting of metaclastic rocks
(e.g. Floyd and Leveridge, 1987; McLennan et &90, 1993; Nesbhitt et al., 1996, Condie et
al., 1995, 2001, Lopez de Luchi et al., 2003, Drebal., 2009, 2011; Cawood et al., 2012, Rudi
et al.,, 2016; Cisterna et al., 2018). Major elersemave been largely used in provenance
analysis but they are less reliable (McLennan et 2890; Nesbit et al., 1996) than trace

elements like the HFSE and REE that remains stdbleng weathering, diagenesis and

metamorphism and makes them far more suitablth@®discussion of the provenance and the
tectonic settings of the basins where clastic rsedts were deposited (e.g. Bathia 1983; Taylor
and McLennan 1985; McLennan et al., 1993; Roserkamdch, 1986,1988; Roser et al., 1996).

3.2.1.1Classification and sour ce weathering

In the classification of Herron (1988) the metatitasocks from the San Martin and La Cocha
groups are mainly wackes, some of them next tdithie between shale and wacke. The three
samples of Sierra del Morro are shale (Fig. 8a)O¥K,O ratio for the wackes is bracketed
between 0.1 and 0.5 which approximately correspomdbe values of this ratio for tonalite to
monzogranite. In a sedimentary environment, Fe-Mgemals are less stable than felsic
minerals therefore the increase in®G#K,O could indicate higher lithic content and/ or krg
contribution of mafic sources,and probably proxymd the source (Herron, 1988). The trend of
increasing F#4/K,0 with SiG/Al,Os, opposite to the that of differentiation in igneawcks
(Fig. 8a), could relate to weathering and transianm.

The chemical index of alteration (CIA) Nesbitt afdung (1982) is a useful parameter to
quantify the weathering degree of source rocks. amalysed sample collection shows CIA
(Fig. 8b, Table 1) values of 54 to 64 that indicateoverall low-moderate weathering. One very
fine grained schist of the La Cocha Group and ame drained biotite-muscovite schist and the
sillimanite schist of the San Martin Group showheigvalues between 76 to 84 which would be
consistent with a shale protolith. Apatite and cadie are very low or even absent in the
selected samples and thus do not affect the Clifgigntly. Our data are plotted in the ternary
diagram A}O,;, CaO* + NaO and KO (Fig. 8b), to evaluate the deviation that theatleistic
rocks show from the original source (Nesbitt andiivgqy 1982; Nesbhitt et al., 1996). Since the
trend for each of the units is close to parallelisnthe A-CN axis, no significant modification
of the (CaO* + NgD)/K,0 ratio from that of the source is observed. Thersection of the
weathering trend defined by the studied samplels thig feldspar join suggests a source rocks

with variable plagioclase/K-feldspar that would dgpanodiorite for the La Cocha Group and
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granodiorite-granite for the San Martin Group. Tiyige of source agrees with the values for the

Fe,04/K,0 ratio for granodiorite and monzogranite.

3.2.1.2Provenance and tectonic setting

Different trace elements are used to analyse batepance and tectonic setting. Sc, Th, Zr,
REE, and high field strength trace elements (HR8E)eliable chemical proxies in provenance
and tectonic setting analysis of sediments and sedtmentary rocks due to their insolubility
and immobile character during transport, diagenesigathering, and metamorphism
(McLennan et al., 1990, 1993).

The contrasting compatibility of Th and Sc in marderived rocks makes the Th/Sc ratio
sensitive to average source composition and tdifglemmafic component in the (meta)-clastic
material (Taylor and MacLennan, 1985). Differene@ge composition for upper continental
crust (UCC) indicate a value from 0.8 to 1 (Tayéord McLennan, 1985; McLennan et al.,
1990; McLennan, 2001). The fine grained schistshef SMG exhibit Th/Sc ratios (Fig. 8c,
Table 1) from 0.6-0.7 except in two samples (M168 #89-05) with values of 1.4 and 0.9
respectively that corresponds to rocks with higga©O and FOs than the rest. The banded
schists of the LCG show mainly UCC values from10.8.4. In this case the three samples with
higher Th/Sc, A70-04, MR10 and A10-06 are higheCaO and in two of them also in P205
than the rest. Th/Sc values for the sillimaniteistobf the Sierra del Morro are the lowest. Zr/Sc
ratio that is a good indicator of sediment recyglis higher in sands and fine grained sediments
related to passive margin and collisional relatasimthan in those from active margin basins
due of the higher abundance of heavier mineratd) as zircon in the sands (McLennan et al.,
1990, Mc Lennan 2001). Values of this ratio areagarage higher in the La Cocha Group, i.e.
19-44 than in the San Martin Group, 5-26 and in gitlenanite schist of Sierra del Morro
(Table 1, Fig.8c). Therefore, based on Th/Sc ratsmurce with a mafic component somewhat
less recycled and more akin to active margin rdl&i@sins is suggested for the SMG and the
schist of Sierra del Morro. In any case, the wigege of variation in both parameters indicates
either a wide spectra of source compositions, lbidgcal variability or an unstable tectonic
environment. High La contents are characteristimtrmediate to basic sources whereas Th is
higher in felsic rocks. La/Th ratio is on averdgeer in the fine grained schists than in the
banded schists that is characterized by valueg ¢tosipper crustal values of 2.82 (Taylor and
McLennan 1985) (Table 1). Co/Th (Table 1) mostlyole1.27 (the higher value for felsic
igneous rocks) for the La Cocha Group suggestfelsa sources but values on average higher
for the San Martin Group might suggest the involeetrof a mafic component.

Traditional discrimination diagrams for characterigthe tectonic setting of sedimentary basins
based on major-element compositions do not incatpoa coherent statistical treatment of the

data (Verma et al., 2013 and references thereieyeNheless since CIA values suggest a trend
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of normal weathering, our dataset is evaluatetiéncbnventional TiQvs FeO;+MgO (Bhatia,
1983) as well as using the robust statistical aggrdased on the discriminant functions (Table
1) proposed by Verma et al. (2013).

In the traditional plots (Bhatia, 1983; Bhatia a@dook, 1986) “oceanic island arcs” are
sedimentary basins adjacent to oceanic island arcssland arcs partly formed on thin
continental crust with sediments mainly derivedrfrthe calc-alkaline or tholeiitic arc, and
continental island arc basins correspond to therssdary basins adjacent to island arcs formed
on a well-developed continental crust or on thimtoeental margins. Intra-arc, back-arc, and
fore-arc basins of this setting are dissected nental arc fragments detached from the
mainland and are fed by sediments mainly derivaminfrfelsic volcanic rocks.. Active
continental margins are developed on or adjaceatthick continental crust composed of rocks
of older fold belts. Sedimentation correspondstoorarc foreland marginal basins and oblique-
slip basins sourced on granite-gneisses and giliceolcanics of the uplifted basement.

In the TiG vs FeOst+MgO (Fig. 8d, Table 1) samples mostly plot in fledds of oceanic and
continental island arc whereas the discriminanttions (Table 1) (Verma et al., 2013) indicate
arc setting which implies active volcanism.

Ti/Zr and La/Sc ratios (Bhatia and Crook, 1986) laetpful in the identification of the relative
contribution of magmatic vs. recycled sources aad discriminate successfully between
different tectonic environments. Ti and Sc represeéhe abundance of mafic phases and are
used to evaluate the volcanic vs. mantelic fingatpn the source and in consequence the
maturity of magmatic arcs (Bathia and Crook, 198&jconium (Hf and Th) is the main
constituent of zircon, the content of which incesadue to rework in sedimentary rocks. La/Sc
ratios are controlled by the mafic or felsic compos of the source; input from mafic and
ultramafic source areas results in an enrichmei&cofin the Ti/Zr vs. La/Sc diagram (Fig. 8e)
(Bhatia and Crook, 1986), samples of the La Cocheuf plot in an area of overlapping
between “active continental margin” and “continémtéand arc” in a trend similar to the recent
deep sea turbidites deposited at continental arging (Mc Lennan et al., 1990) as already
indicated by (Lépez de Luchi et al., 2003). In ghet of (La/Yb), vs Eu/Eu* (Fig. 8f) most of
the samples are located in the back -arc and aorttharc fields.

In synthesis, major and trace elements values atgsrsuggest an arc related setting with a
major contribution from felsic sources. REE patteane generally fractionated, with (La/Xb)
values of 6.87 to 9.70 for the La Cocha Group andenvariable from 5.07 to 12.89 for the San
Martin Group (only three data are available). Sigant enrichment in LREE (Table 1) and the
distinctive negative Eu/Eu* coupled with a relatiwvélat (Gd/Yb}< 2) HREE pattern suggest

derivation from upper crustal rocks composed afitetomponents (McLennan et al.,1990).
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33. LITHOLOGY AND GEOCHEMISTRY OF THE METABASIC UNITS:
AMPHIBOLITES

3.3.1Field and lithological features

Amphibolites which are relatively scarce in the CM{ppear as concordant layers or lenses of
dark green to dark grey medium-to fine-grained afalyi foliated rocks mostly injected by
concordant and discordant leucocratic veins. Tine grained amphibolites show a well defined
foliation and lineation and form concordant lay@ms 70 cm thickness) or lenses (up 3 m long).
In the scarce outcrops inside the schists of th& L&mphibole porphyroblasts and biotite
define a planar/linear fabric in a matrix composefl epidote, hornblende, actinolite,
plagioclase, ilmenite and titanite. Most of the amads are anhedral. Generally, the amphibole
exhibits a light green core and a dark green botddghe migmatites and gneisses, amphibolites
are medium grained, hornblende and plagioclasegh&ranain mineral constituents; whereas
quartz, biotite, epidote, titanite and ilmenite ar@mor phases together with occasionally zircon
and apatite. Chlorite, intergrown with or replacibigtite was developed along the foliation
planes. Garnet was found in some amphibolite fajgrated close to the contact between the
banded schist of the LCG and the SRG. In some casi#se banding is defined by grey
milimetric layers consisting of plagioclase andreeayuartz and dark green layers of amphibole
and scarce yellow-green epidote-clinozoisite. Teeguare nematogranoblastic with polygonal
to lobate intergranular contacts or nematoblastid Eepidoblastic when biotite is present.
Leucocratic fine to medium grain veins consist o&uqz, plagioclase and scarce biotite, while
coarse grain veins exhibit quartz, microcline, pase and biotite.

Regionally some amphibolites are associated wittrsiicatic rocks. Delakowitz et al. (1991a,
b) described in the western flank of the SierraMeiro. i.e. in the present Santa Rosa Group,
an association of (banded) amphibolites, epidotedflende schists, marbles, (scheelite-
bearing) calc-silicates, (tourmaline-bearing) mschists and, sporadically, hornblende schists
emplaced in gneisses and migmatites.. No garnetwveasioned in these amphibolites of Sierra
del Morro. The granoblastic calc-silicate layers arade up by alternating 0.2 mm to 1 mm
bands of different grain size composed of clinoaitmple, garnet, titanite, quartz, apatite, and

opaque minerals.

3.3.2.Geochemistry

Five whole-rock major and trace elements compastiof the amphibolites are presented. Two
data (21-3, P16) belong to garnet bearing amphésolvhereas samples P22, P68 and P69 are
hornblende-plagioclase amphibolites. See Appendox Analytical procedures

The samples are chemically classified as high-Mgdettic basalts (Fig. 9a) based on major
elements (Jensen, 1976) and as basalts (Fig. $edban trace elements ratios, i.e. Zr/Ti vs

Nb/Y (Pearce, 1996) diagrams respectively.
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Major element chemistry (Table 2) contents shownitéd range for major elements, i.e. $iO
47.4 to 50.4 wt.%, ADs; 14.2 to 15.5 wt.% with moderate JBg (9.7 t010.7 wt.%), CaO (11.5

to 13.8 wt.%) and MgO (5.8 to 7 wt.%) concentragiolow MnO (0.14 to 0.17 wt.%) and®
(0.07 to 0.21 wt.%) contents. The total alkali @mns (NaO+K;0) for these rocks is below 3.2
wt.%. Mg# from 53 to 58 indicates an evolved signat Abundances of transitional trace
elements (Ni, Cr, and Co) are low whereas Rb, Ba,P® and LREE, high field strength
elements like Nb and Ta show moderate contentsnitRee mantle normalized REE patterns
(Fig. 9c) show a negative slope with (La/¥b4.1 to 5.7, (La/Smy) 2.1 to 2.9 and (ii) moderate
(Gd/Yb)y = 1.2 to 1.4. Primitive mantlenormalized incompatible trace element patterns show
(Fig. 9d) positive peaks at U, Ta, Pb, and Ndreghtive Nb anomalies.

Tectonic setting discriminant diagrams based mainlythe less mobile elements indicate
MORB or island-arc basaltic precursors for thesl@bolites. Plots indicate MORB in the
MnO-TiO,-P,0Os (Mullen, 1983) diagram (Fig. 10a), E-MORB in the-Mb-Y diagram
(Meschede, 1986) (Fig. 10b), MORB -IAT in the Z-Yi(Pearce and Cann, 1973) (Fig. 10c)
diagram. As samples show a LILE, Pb, U and LREEchment combined with MORB
signature the most likely signature is comparablth iE-MORB (Gale et al., 2013 and
references therein) or with a back-arc basaltsasige (Pearce and Stern, 2006). FeO*/MgO
1.3 to 1.6 for a Ti@range from 1.7 to 1.9 wt.% and Ba/Nb between 1728oand Nb/Yb
between 3.4 to 4.1 (Table 2) are an indicationamkbarc basalts (Pearce and Stern, 2006; Gale
et al., 2013).

34. METAMORPHISM OF THE METABASIC UNITS

Pressure-temperature pseudosections were calculatedample 21-3 using the software
package Theriak/Domino (De Capitani and Petrak&@40) and the database of Holland and
Powell (1998) for the geologically realistic systtinNCKFMASHTO (MnO-NaO-CaO-K0-
FeO-MgO-ALO;-Si0,-H,0O-TiO,-Fe03). The bulk composition of the sample was deterdhine
by XRF analysis and is given in Table 2.

Sample 21-3 that belongs to the Santa Rosa Groapthe contact with the La Cocha Group
immediately north of the Renca Batholith (Table &ntains (Fig. 11a, b) garnet, amphibole,
plagioclase, quartz, epidote and chlorite with asogy ilmenite, titanite, rutile, zircon and
apatite. Garnet (Fig. 11a) forms porphyroblasts f@@ mm) with inclusions of epidote,
plagioclase, quartz and ilmenite and is commondgtiirred with chlorite occurring along the
cracks. Compositionally, garnet (Fig. 11c) has somi@or zoning with elevated XSps
(=Mn/(F¢*+Mg+Ca+Mn)) in the core (0.36 to 0.3), lower XalrF€"/(F€*+Mg+Ca+Mn)) in
the core (0.34-0.40) and relatively flat Xpyr (=NE#'+Mg+Ca+Mn)) and
Xgrs(=Ca/(F&+Mg+Ca+Mn)) contents (0.08 to 0.09 and 0.24 to @&pectively). Where
ilmenite (with MnO of 10.2 to 12.8 wt%, andJ&g of 1.0 to 4.1 wt%) occurs in the matrix, it is
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surrounded by a thin rim of titanite (Fig. 11b i)seThe bulk of the matrix consists of
equigranular amphibole (up to 1 mm in size), plagise and quartz (both usually up to 500
pum). Plagioclase has been extensively alteredrioteeand where analyses were obtainable, it
gives Xab (=Na/(Na+Ca+K) of 0.88 to 0.92. The muscovitat throws inside the plagioclase
grains gives XK(=K/(K+Ca+Na)) of 0.93 to 0.94 anashSi p.f.u of 3.16 to 3.18. Amphibole
has ragged grain edges, and commonly epidote dodteh(Fig. 11a) occur on the edges of
amphibole grains. Amphibole is classified as tsciaditic hornblende (one analysis was
magnesio hornblende), has XMg (=Mg/(Mg+Hevalues of 0.60 to 0.63, and contains
inclusions of quartz, ilmenite and titanite. A dmgutile was found within a titanite inclusion in
amphibole. Two different varieties #epidote are present and occur as inclusions wiihinet
and amphibole and within the matrix. They haveedéht Xps (=F&/(F€**+Al)) of 0.09 to 0.12

or 0.19 to 0.25. In some cases, separate graing slifterent composition while in other
situations, a grain has a core of one compositiah transitionally passes to the other. Chlorite
occurs in the matrix as coarse grains growing enritms of amphibole, it also occurs on large
cracks within garnet grains. Chlorite &g, of 0.53 to 0.63 (Suppl.- Mat. 1).

3.4.1.Pressure-Temperatur e conditions

For sample 21-3, the mineral assemblages and diesegrvations indicate peak metamorphic
conditions to be sub-solidus. For this reasosQ Mvas set in excess. Compositional isopleths
were calculated for garnet and plagioclase to &rtonstrain the peak P-T conditiolG, sps
Xpyr, Xars andXap). The amount of R©; present in the bulk composition was determineddas
on recalculated compositions and modes of th®feearing minerals present (Droop, 1987). A
T-MFe,0; diagram was also calculated to see the effectehighlower F& content has on the
modelled mineral assemblages (see Supplementesy.fil

The following mixing models and notations were &bl garnet, White et al. (2005);
plagioclase, Holland and Powell (2003); biotite, it¥tet al. (2005); white mica, Coggon and
Holland (2002); ilmenite, White et al. (2005); ctile, a combination of Mahar et al. (1997) and
Holland and Powell (1998); epidote, Holland and Bibw1998); talc, Holland and Powell
(1998); clinoamphibole, Diener et al. (2007); cizgroxene, Green et al. (2007); magnetite-
spinel, White et al. (2002); orthopyroxene, Whiteaé (2002). Rutile and quartz are also

included as pure phases.

3.4.2.P-T modelling results

Based on the sample petrology, the stable peaknhtzge is garnet + amphibole + ilmenite +
quartz + plagioclase + epidote + titanite. Duehe presence of Febearing minerals, a T-
MFe,O; diagram was calculated initially (see supplemsgnfmyure). This was conducted at 6

kbars because this is the pressure indicated byatmghibole compositions. However this



726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

21

diagram showed large stability fields for clinopyeoe which is not observed in the sample.
Potentially this results from an excess of calcimnthe whole rock composition due to the
presence of apatite. Despite being a minor compgadnethe samples (only 1 to 2 %), the large
proportion of calcium in apatite (which is not cmlesed in the modelling) can cause excess Ca
in the modelled composition. In order to evaludies,ta T-MCa diagram was made (see
supplementary figure). This diagram uses a modéfeifevalue because this stabilises ilmenite
at slightly lower temperatures. The right hand sfiehe T-MCa diagram is based on the Ca
content of the measured bulk composition. Moving, leith a Ca decrease, clinopyroxene
stability moves up temperature. The interpretek @essemblage field for the sample is present
on this diagram (field in bold), the reduced vati€Ca was used to create a new P-T diagram
for the sample. The interpreted peak field is presa this diagram, occurring at 5 to 6.5 kbar
and 500 to 650 °C (Fig. 12). Garnet compositiogapleths were conducted in order to provide
additional information about the P-T evolution. Hower, these do not intercept. Potentially this
may be a result of an inappropriate Ca of' Ralue used in the composition. Isopleths were
also calculated for the T-MCa and TMFe3 diagrant arying these values does not produce
more suitable compositions. Another possibility tieat the garnet has experienced some
diffusional re-equilibration at peak conditionsne@ the cations diffuse at different rates,
offsetting the intercept. The XAIm and Xsps valaesoccur within the peak field, although
they do not overlap. Both additionally show the samend with the P-T evolution moving up T
and P. The garnet information, along with the clesnm mineral assemblage define the P-T
evolution for the sample. These changes in padicate the presence of albite inclusions in
garnet, and titanite inclusions in amphibole; th®responds to the early portion of the
evolution being in an albite + titanite bearinddieGarnet growth and the presence of ilmenite
(plus a rutile inclusion in ilmenite) suggests aolation involving garnet growth into the peak
field. While we have no constraints on the peak ohditions, the garnet seems to have
experienced diffusional re-equilibration, which ylccurs in the time frame of a metamorphic
event at temperatures above 600 °C and on smailkeggrains such as those present in this
sample (Carlson, 2006; Caddick et al., 2010). Seuggest peak conditions were 6 kbar and
620 °C (limited only by the clinopyroxene presenield). This is confirmed by
geothermobarometry in sample 21-3 where tscherteackiexists with plagioclase, epidote and
Ti bearing phases. The calibration of amphibolelyggmobarometer by Zen and Schluz (2004)
yielded a narrow range of P-T values between 6(%62at 6.0 kbar. Late chlorite on the rims
and in cracks of garnet, along with titanite rimrs ibmenite and matrix plagioclase breaking

down to albite suggests that the P-T path moveld bawn T (see P-T Figure 12).

3.5. ELECTRON MICROPROBE (EPMA) MONAZITE DATING
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Monazite dating was performed on four samples: miggnatite, P7, of the Santa Rosa Group,
two, 19-9 and 65-04, from the banded schists@l i Cocha Group and one 104, from the San
Martin Group.

3.5.1 ANALYTICAL METHODS

3.5.1.1SEM-based automated mineralogy (MLA)

Automated mineralogical methods (e.g. Fandrichlet2807), based on a scanning electron
microscope SEM Quanta 600-FEG-MLA by FEI Compamyigped with Bruker Dual X-Flash
energy dispersive spectrometers for EDX analyse® wapplied to complete thin sections of
coarse- and fine-grained biotite-plagioclase pageges, as described in Schulz (2017).
Acceleration voltage of the focussed electron b&ans set at 25 kV, which corresponds to
beam current of 10 nA. A software package for nahdiberation analysis (MLA version
2.9.0.7 by FEI Company) was used for the automsatedrage of the electron beam for EDX
identification of mineral grains and collection afimerous EDX spectra. The following
measurement routines were applied:

XMOD is a single spot point counting for mineral deoanalysis, based on ~*IBDX spectra

at a 10 um step size in a thin section. Mineral esad wt% (Table 3) have been recalculated
by introducing average densities listed in minelaiabases. A calculated chemical assay was
derived from the mineral mode, densities, and tiveral chemical compositions. For mica and
plagioclase the representative compositions fronXHBbBeasurements were introduced. The
calculated assays (Table 3) thus represent anx@pyaton to the bulk rock composition in a
given thin section plane and may differ from thdkboomposition obtained from a larger
volume of rock.

The SPL (Sparse Phase Lineup) search routine apalieackscattered electron (BSE) grey
colour value trigger for the detection of mineralsnterest which subsequently are analysed by
single spot EDS spectrum (Schulz et al. 2020). €h@bles the detection and identification of
rare phases as monazite, xenotime and zircon aiddtrrounding minerals. With a line-up
function one receives a catalogue of all monazite xeenotime grains with their intermineral
relationships in a sample. It also allows the gfiaation by which minerals monazite is locked
(Table 3). This was used to select monazite grisingletailed investigation in backscattered
electron imaging under the SEM, and quantitative S\dhalysis with the electron microprobe
(EPMA).

3.5.1.2. Electron microprobe (EPMA) monazite dating

Electron microprobe Th-U-Pb dating is based ondbgervation that common Pb in monazite
(LREE, Th)PQ is negligible when compared to radiogenic Pb tasylfrom the decay of Th
and U (Montel et al.,, 1996). Electron microprobealgsis of the bulk Th, U and Pb

concentrations in monazite, at a constafy/**U, allows for the calculation of a chemical
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model age (CHIME) with a considerable error (Mortehl., 1996; Pyle et al., 2005; Jercinovic
et al., 2008; Suzuki and Kato 2008; Spear et 8092 A protocol for the monazite analysis
with a JEOL JXA-8230 electron microprobe hostedhat Institute of Material Science of the
TU Bergakademie Freiberg/Saxony, Germany, has degaloped and adopted. The electron
beam was set at 20 kV acceleration voltage, 100esn current, and 5 pm beam diameter. For
analyses of monazite <10 um in diameter, the baameter was set to 3 pum. ThexMlines of

Th and Pb and the pA lines for U of a PETL crystal in a spectrometethva capsuled Xe
proportional counter were selected for monazitdyarsa Orthophosphates of the Smithsonian
Institution (Jarosewich and Boatner 1991; Donovénale 2003) were used as reference
materials for calibration of REE and Y, ignoringtlow residual Pb (< 0.5 wt%) in some of the
crystals. Calibration of Pb was carried out on turs crocoite. The U was calibrated on a
metal reference material. The Th was calibrate oeference monazite labelled as Madmon,
with validated special Th®PbO characteristics (Schulz et al., 2007; Scharid Schiissler
2013; Schulz et al., 2019). The Madmon referenceanite was also used for offline re-
calibration of Th@, as well as for the control of age data. Instrumdnift during the 2
analytical sessions of 24 hrs was controlled by sueaments on the Madmon reference
monazite and was negligeable for Th, Pb and U. yseal with Al and totals outside the range
from 98 — 101.5 wt % were not considered for furilresentation.

Interference of Yl on the PbM line was corrected by linear extrapolation as psag by
Montel et al. (1996). An interference of ThMn UMB was also corrected. The number of
single analyses varies with the grain size of tlomazite, e.g. 2-5 analyses in grains of 30 - 40
um. In most cases the small grain sizes of the mtn&<20 pm) allowed only one single
analysis per grain. Monazite chemical ages wese ¢alculated using the methods of Montel et
al. (1996). A & error deduced from the counting statistics (JE@iorg and an erroep, =
\/(Cts/s»EAK + Cts/ske)/(Cts/speax - Cts/sks) Was propagated to an error in Pb element %. For
Pb the error in element% is ~0.004 (recalculatechfthe JEOL error) or ~0.001 (recalculated
from ep,) for the reference monazite Madmon (~0.25 wt% RWB& applied an error in Pb
element% of 0.004 to all analyses, which propagtethe reference monazite Madmon with
~506 Ma typically to £16 Ma &, and for Ordovician monazites (~0.09 wt% Pb;42wt% Th)

to 30 - 40 Ma (8). Ages were further determined using the PR®bO isochron method
(CHIME) of Suzuki et al. (1994) and Montel et al906) where Thg is the sum of the
measured ThOplus ThQ equivalent to the measured WOhis is based on the slope of a
regression line in Th® vs PbO coordinates forced through zero. As thleutation of the
regression line provides underestimation of thererweighted average ages for monazite
populations were calculated from the single analdefining the regression line using Isoplot
3.0 (Ludwig, 2001). In all analysed samples, thalei@ges obtained by the isochron and the

weighted average methods coincide within the effbe age data are interpreted as the time of
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closure for the Th-U-Pb system of monazite duringagh or recrystallization in the course of

metamorphism.

3.5.2. Monazite ages and mineral chemistry

La Cocha Group:Sample 65-04 is a fine grained baduetite-plagioclase schist with 2 mm

thick quartz-rich planar layers alternating withmin thick biotite- and plagioclase-rich layers
(Table 3). In some of the layers large muscoviteles are oriented oblique to the layering. The
sample contains many small monazite grains (25 jameter at MD50, Table 3), which mostly
allowed only a single analysis per grain. In thample significantly most monazite grains are
completely locked or in contact with epidote. Wteedouble corona of inner apatite and outer
allanite (epidote-group mineral) surrounds a mdeazhis provides a hint to a retrogressive
replacement of monazite (Finger et al. 1998). Stmfona structures are not observed here.
Therefore it is concluded that monazite crystaflif®mm epidote. The weighted average age by
the monazite analyses which define the isochram 418 + 10 Ma

(Fig. 13a).

La Cocha Group: Sample 19-09 is also a bandeddipkhgioclase paragneiss with alternating

biotite- and quartz-rich layers. In the biotitekriclayers appear small round garnet
porphyroblasts with 0.2 mm in diameter. The thictiem is cut perpendicular to the fold axis of
a similar F fold that affects S Biotite blades show preferential orientation fletdo the axial
plane foliation of the fold, whereas some large ecouge blades are decussate in reference to
the layering and the axial plane foliation. Mustevs therefore interpreted to have crystallised
post-folding. Monazite grains are mostly small (88 diameter at MD50, Table 3). Some of
the monazite grains are partly locked by apatitea Irare single case, a monazite grain is in
contact to xenotime. The weighted average age diydhe monazite analyses which define the
isochron is at 434 + 12 Ma (Fig. 13b).

San Martin Group: Sample 104 is a fine grained ednoiotite plagioclase paragneiss with

alternating biotite-plagioclase- and quartz-richyels. Large muscovite porphyroblasts
overgrow the foliation which is defined by prefeialty oriented biotite flakes. There are also
some decussate biotite flakes oriented perpendidolathe foliation. Monazite grains are
slightly larger than in samples 65-04 and 19-090\8B um diameter at MD50 (Table 3). Some
monazite grains are in contact with large apatigging and one case of a monazite-xenotime
contact was observed. The weighted average age biw¢he monazite analyses which define
the isochron is at 431 + 8 Ma (Fig. 13c).



873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

25

San Felipe Group: Sample P7 is a medium-graingitdjgagioclase paragneiss composed of a

biotite-rich and a plagioclase-quartz layer. Mustappears in fine-grained aggregates. Some
of the biotites are retrograded into chlorite (EaB). The monazite grain sizes are the largest
among the sample suite and are 60 um diameter &0MDable 3). This allowed to analyse
some grains by multiple single spots. Some of thenamite grains display sutured grain
boundaries and are surrounded by a corona of apatih tiny thorite grains. This can be
interpreted as a retrogressive replacement of nien¢g&roska and Siman, 1998; Finger et al.,
1998; Krenn and Finger, 2007; Budzgt al., 2011; 2017).The weighted average age diyen
the monazite analyses which define the isochran 416 + 5 Ma (Fig. 13d).

In XGdPQ vs XYPQ, coordinates, the monazites are subdivided intogmaips with different
XYPQ,, ranging between the garnet zone at 0.03 andillireamite zone at 0.06<YPQO, as
indicated in Pyle et al. (2001), at unifoX®dPQ between 0.02 and 0.03 (Fig. 14a). In the age
vs Y,0; plot, monazite in samples 65-04 and 19-09 havdlasin,O; contents at around 1.4
wt%. In sample 104 the monaziteQ; contents are around 2 wt%. In sample P7 the mtmazi
Y,03 are 2 - 3 wt% (Fig. 14b). In the monazKelREE+Y vsXLREE diagram (Fig. 14c) the
four studied samples display overlap of data cteséd follow a common linear trend (Fig.
14c¢).The dominant cheralite exchange (Th or U +=C2 REE) is typical for systems with
elevated Ca in bulk rock composition (Spear ane P3002). Most of the monazites plot along
the cheralite substitution trend and only somelsiagalyses in samples 104 and 65-04 deviate
(Fig. 14d) from this trend.

4. DISCUSSION
4.1 PROVENANCE AND TECTONIC SETTING OF THE METACLASTIC UNITS

Geochemical criteria for the combined analysis efvnand already published data of the

metaclastic units of the Conlara Metamorphic Compj@ovide significant additional
constraints on the sedimentary provenance andniiectetting of the protoliths (L6pez de Luchi
et al.,, 2003). The metaclastic units (Fig. 8a) ld La Cocha and San Martin groups are
greywackes and shales. The lower Th/Sc and Zri#xsr.59 to 0.67 and 5 to 26 respectively)
indicate a source with a mafic and less recycledpment for the SMG whereas the higher
Th/Sc and Zr/Sc ratios (0.99 to 1.41 and 19 torédpectively) in the LCG (Table 1, Fig.8c)
suggest felsic and recycled sources. Lower La fichrdgher Co/Th (Table 1) ratios also point
towards the involvement of a mafic component in$MG protoliths. REE for the CMC (Table
1) shows a moderately negative Eu anomaly assdciatth low Gd/Yby being the fine
grained schist of the San Martin Group those with towest values and the smaller Eu
anomaly. All these results are typical for redenbidites (McLennan et al1990). Negative Eu

anomalies (Fig. 8f) also demonstrate intracrusféréntiation of the magmatic precursors by
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processes involving separation of plagioclase, swash partial melting or fractional
crystallization.

Most of the inferences about the tectonic settihthe metagreywackes point to a continental
island arc, active margin or back-arc basins (&id, e, f). The samples plot in areas of overlap
of the fields for trailing edges, back arc and ommtal arc (Fig. 8f) indicating the development
of a back-arc basin which evolved with the progreserosion of the source area. Uplifted old
basement and arc-related detritus must be the emdbers of the mixtures. The mafic rocks
that are interlayered with the migmatites exhibth@mical signature indicative of a back-arc
setting which is akin to the inferred tectonic isgttfor the sedimentary basin.

Cawood et al. (2012) used the shape of the frequelats (Fig.15a) and cumulative proportion
curves (Fig. 15b) based on the difference betwikemteasured crystallization age for a detrital
zircon grain and the depositional age of the swgiorsn which it occurs, to infer the tectonic
setting of the basins. Although the number of spaiffl the statistical requirements only for
the two samples taken from Rapela et al (2016),thal curves are similar and indicate
collisional to convergent settings. Actually in Gasd et al. (2012) back- arc basins are
characterized by detritus with ages that approxénthie depositional age of the samples
together with those derived from adjoining cratamsch make them similar to his proposal for

foreland basins

4.2. RELATIONSHIP BETWEEN METAMORPHISM-DEFORMATION-
MAGMATISM

The metaclastic rocks of the CMC are metagreywackes scarce metapelites with lesser
amounts of tourmaline schists and turmalinites.dzde Luchi (1986) proposed a polyphase
metamorphic evolution. The penetrative, dominahéfion, S locally associated with banding
in some metaclastic schists is related to the skclwfiormation (). An earlier, relic $is
preserved in microlithons as biotite polygonal ascsas thin folded leucocratic veins with S
axial plane cleavage (Fig. 5a).The penetratigefdBation is in turn affected by upright,
generally isoclinal, N-NE trending sDfolds that control the patterns of the roughly NNE
trending belts of the different groups that constitthe Complex (Fig. 1a). Non penetrative,
discontinuous high-T shear zones within the schists migmatites are related with ®hereas
some fine-grained discontinuous shear bands tleaegpecially conspicuous in the Sierra de
San Felipe (Fig. 1a) attest for g eformation phase.

Deformation/metamorphism relationships are congister the different components of the
CMC with peak metamorphic conditions being neaglgchronous with Bin the metaclastic
units. Plagioclase coronas around garnet both inuldxh schists and in the migmatites might
indicate a decompression path related $0A3 Morosini et al. (2019) indicated that the M8

Las Cafas Plutonic Complex was emplaced at shallostal levels in a marginal basin that
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was structured and metamorphosed previously td=tHmatinian magmatism, an exhumation
path would have developed predating its emplacenBotite-quartz mylonitic shear zones are
related with [ whereas B discontinuous shear bands are defined by seqcitéetz+ chlorite
layers. The LCG and SMG are characterized by artkbtotite-quartz-plagioclasmuscovitet
garnett scarce fibrolite assemblages. In contrast theaSAnsa and San Felipe migmatites and
gneisses bear the non-diagnostic biotite dffented)-plagioclase assemblage, with garnet and
sillimanite rarely occurring as prograde phases gathet displaying post,Splagioclase
replacement. Muscovite blasts overprintingpfanes (Fig. 5¢) are widely distributed on mica
rich domains of all the rock types.

Preliminary calculations based on Ti in Biotite a@drnet-Biotite thermometers indicate
temperatures from 529 to 608 °C and barometric tcaings based on Garnet-Plagioclase-
Muscovite-Biotite barometer of 5.4+ 0.5 kbar fbetLa Cocha Group and from 582 to 755 °C
and 6.5 + 1 kbar for the San Felipe Group migmsit{ledpez de Luchi et al., 2008, 2009).
Morosini et al. (2019) obtained average P-T coadgi for the metamorphic climax of the
banded schists fronb.5 + 1.2 kbar and 680 + 37 °C and calculated gp&rature gradient
~32.3 °C/km that corresponds to a low pressure sdriethe middle-amphibolite facies.
Calculations on one garnet amphibolite, that appesapart of a disrupted layer along the S
foliation of the migmatites, suggest that the peakditions were 6 kbar and 620 °C (Fig.
12)which are similar to the P-T calculated by LoplezLuchi et al. (2008) for the San Felipe
Group migmatites.

P-T calculations on the metaclastic rocks wereqoeréd using garnet that grew during S
development (Fig. 11a), therefore this data wowadespond to the P-T constraints during D
development. In the migmatites and amphiboliteDg as indicated by the P-T calculations
suggest that these rocks attaineddtideeper levels of the crust than the La Cocloa®Gr

P-T values for B can be roughly framed in the LCG by the calculapgdssure of
crystallization based on the Al-in hornblende basgtan of ~4.45 + 1.10 kbar for the intruding
470 Ma Las Cafias Pluton (Morosini et al., 2019esghresults imply that the host rock, i.e. the
La Cocha Group,was uplifted km before this pluton was emplaced. Growth afadumsite
blasts (Ortiz Suérez, 1988) might correspond te $itge of uplift. Isothermal decompression
between Dand B in the banded schist of the La Cocha Group coelthticated by the lack of
thermal aureole around the La Tapera Pluton (La@gekuchi and Cerredo, 2001) and the Las
Cafas Pluton (Morosini et al., 2019); lded S and controlled the emplacement of the syn-
kinematic Ordovician granitoids. The average edtthatemperature for Obased on the
Chlorite thermometer would be 360°C (Lopez de Luathal., 2009). In contrast biotite growth

in D4 shear zones may suggest higher temperatures.rébenp distribution of the groups that
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make up the CMC as NNE-SSW trending belts couldlrésm the differential exhumation of
the basement complexes related with D

No clear evidence of syn,[Pampean (?) granitoid magmatism was found in thik@xcept
for some orthogneisses of the San Felipe Group.Qidevician magmatism which intrude the
already metamorphosed CMC (LOpez de Luchi et &Q72 corresponds to the Ordovician
Granodiorite-Granite (OGGS) and Tonalite (OTS)esuifThe low temperature OGGS, like El
Pefién Granite or Los Alanices granites are consitiery represent partial melts from the CMC
suggesting that a partial melting event may haweioed at or before 497 Ma (Lépez de Luchi
et al., 2007). The only evidence of in situ dehyidra(?) melting is the growth of sillimanite in
the migmatites which could be due to the progradeawovite out reaction and the presence of
cordierite. The back reaction in which muscovitasbithat overprint the,&; foliation include
sillimaniteffibrolite is also present (Fig. 6¢). &ldevelopment of biotite rich mesosome might
also suggest a water present melting event (Weajnbed Hasalova, 2015). Migmatitic rocks
exhibit at least two deformation events (Fig. 6, ThHe main Sfoliation is folded along which
profuse leucogranitic leucosomes are recognizedntites and diatexite are locally observed
around some Ordovician granitoids that intrude wtfse non migmatitic rocks (Lopez de
Luchi, 1986, Ortiz Suarez, 1988, 1996, Steenketh 2006, LOpez de Luchi et al., 2007).
Therefore if partial melting and associated mignaditon are related to the low-T Ordovician
granitoids (Lépez de Luchi et al., 2007), eithee @m two discrete metamorphic events could
have developed. In the latter case migmatizationldvbiave overprinted a first Pampean or
older (?) metamorphism preserved not only in tba-migmatitic rocks like the La Cocha
Group but also in the metamorphic enclaves indidedrdovician granites. Alternatively if only
one metamorphic event is recorded for the entiraptex migmatization would be developed
in rocks of suitable composition probably similar the San Martin Group where profuse
leucosome development is locally present whereagpshmmitic rocks are not affected by this
process.

Lépez de Luchi et al. (2007) proposed that the aoghent of the OGGS was coeval with
folding and shear zone development associated; wHereas Morosini et al. (2019) proposed
that Las Cafias Pluton emplacement was controlled &lyear zone during the exhumation of
the CMC. The Ordovician granitoids may representsmaigrated from their sources probably
structurally controlled. Probablyslwvas active in the interval 500- 470 Ma and coldrbhot
only the ascent of crustal derived granitoid mags@msced on the CMC but also that of the I-
type magmas like La Tapera or Las Cafas plutoriaglitine exhumation of the complex. The
association of gabbroic rocks in the Las CafatRImight explain a hot thermal regime and
the slow cooling of the complex. The present distiion of belts in which in situ partial
melting may be envisaged alternates with belts hickv granitoids either S or | type are

intruded, results from an event younger that thgnmaitization.
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4.3. MAXIMUM DEPOSITIONAL AGES (MDA) BASED ON DETRITAL ZIRCON
ANALYSIS

Four detrital zircon age data for the CMC were pived from the literature: A73-05 (Drobe et
al., 2009) corresponds to the banded schists @fLth Cocha Group at the type locality,
CON16002 (Rapela et al., 2016) was taken from radé@ schist that crops out in or is in
contact with the Santa Rosa Group migmatites; AR%Sdeenken et al., 2006) corresponds to a
fine grained biotite-muscovite schist from the $4artin Group and FSL 16004 (Rapela et al
2016) is another fine grained schist located 3 kmimof A25-01 and corresponds to the same
outcrop than sample A09-06 (Table 1). Datasets a#$ociated errors higher than 10% were
not included. Age data were filtered accepting galless than 10% discordant and common
Pb<5%: *’Pbf*®Pb ages are used for ages >800 Ma. The sampleasitehe strategy of
sampling as well as other factors like the caléotest, errors and standard exert a strong
influence of the final calculated maximum depositibages. Age pick (Gehrels et al., 2006)
and detrital zircon spectra using Isoplot v 4.1 evased to calculate MDA. In any case no
record of detrital zircon of Pampean ages is oleskr¥he spectra of all the samples are quite
similar with MDA based on Age Pick from 598 to 58 being the San Martin Group schist
those the older detrital ages (Fig. 15a, b) Détdtecon age of the CMC rocks (Fig. 15a),
exhibit a similar shape-spectra and relative pripas of inherited zircon ages. In the banded
schist of the La Cocha Group there is a range oinger ages from 800 to 550, with the
younger peaks at 600 to 570 Ma. A significant pathe pattern lies between 1200 and 900 Ma
which is typical of Grenvillian ages. Isolated Ralproterozoic single ages are present. Rapela
et al. (2016) reported small Ordovician peak at4&d Ma obtained from some zircon rims but
there is an interval from 553 Ma to 487 Ma withduwirital record in his results for the banded
schist. It is important to mention that the aboventioned sample is located inside migmatites
and that granitoids intruding the banded schistecan interval from ca. 497 to 470 Ma.
Spectra for the San Martin Group schist exhibit ohamt peaks from 631 to 587 Ma and from
1060 to 920 Ma together with a possible input freources at 780/820 Ma in sample FSL
16004, which also shows a single grain age ca. ¥®@s indicated by Rapela et al. (2016). As
it can be observed (Fig 16 a, b) MDA based on agjegre older than 550 Ma. In consequence,
these metaclastic rocks do not show Pampean detnjpwit, which suggests that the deposition
predates the tectonic uplift and subsequent erasithe Pampean orogen. Thermo-barometric
data from Sierra de Comechingones document a mimirofl 20 km of unroofing of the
Pampean basement during the early Cambrian (530&)(QRapela et al., 1998; Otamendi et
al., 2004).

4.4 TIME CONSTRAINTSFOR THE METAMORPHIC EVOLUTION OF THECMC
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The metamorphic evolution of the Conlara MetamargPdmplex in an absolute chronological
framework is still an open question. Maximum deposal ages of ca.580 Ma and Ordovician
crustal derived granitoid intrusions on the alreadgtamorphic Complex indicate an ample
interval between sedimentation and granitoid intnus Available data so far indicates that the
La Cocha Group preserves a Pampean? or older mgthisim as indicated by the Pb / Pb
garnet age of 564 + 21 Ma (Siegesmund et al., 2(A€ak metamorphic conditions have also
been assigned also to the Famatinian orogeny (Vélggmand Simpson, 2004) based on loosely
constrained U-Pb monazite age of ca. 480 Ma oldaioe migmatite probably located in the
Santa Rosa Group that is referred to as a persmramunication without any published
analytical information. Interestingly in the bandschist that is preserved as resisters or mega
enclaves inside the migmatites of the Santa Rosap;rRapela et al. (2016) found rims of
around 480 Ma in detrital zircons, an age thatdmadent with the age of the Ordovician
granitoids.

Specifically for the La Cocha Group the lower liffot the metamorphic peak was established
at 497 + 8 Ma (Steenken et al., 2005) based oagheof a leucogranitic facies of the El Pefion
Granite which intrudes durings0vith clear cut contacts with the La Cocha Grouprathe M
(Llaneza and Ortiz Suérez, 2000), ok kBteenken et al., 2005) metamorphic climax. This
upper limit is further reinforced by a U-Pb SHRIMi#tcon age of 470 Ma + 8 Ma of an
amphibole tonalite facies of the Las Cafias Plut@idmplex (Morosini et al., 2019) and by the
Rb/Sr whole rock age of 460.2 £ 39.4 Ma (MSWD: 4.id4tial ratio: 0.7075, Rb/Sr whole rock
errorchron) for the La Tapera Granite (Fig 17 dlid)pez de Luchi and Cerredo, 2001), which
also intrudes the La Cocha Group. The analysishef dtructural evolution of the Conlara
Metamorphic Complex was first considered by Lopez.dchi (1984, 1986), Llaneza and Ortiz
Suérez (2000) and Lépez de Luchi and Cerredo (2@&EIording to these studies, the banding
of the banded schist-gneisses is parallel,tarSaxial-plane foliation that results from.[3ince
the pervasively solid-state deformed granitoidusiions (Fig. 17c) such as the 460.2+39.4 Ma
La Tapera Granite (LOpez de Luchi, 1986, Lopez dehii and Cerredo, 2001), the El Salado
granodiorite and the 497 + 8 Ma El Pefidn Granitarieza and Ortiz Suarez, 2000, Steenken et
al., 2005) include folded xenoliths of the bandedis and were intruded during; Rheir late
Cambrian emplacement would mark the earliest stdigeamatinian compression within the
Complex. Microstructures in ElI Pefion denote corynfrom magmatic to high-temperature
solid-state deformation, indicating the synkinematinplacement of the pluton with respect to
Ds. Moreover as the emplacement of the 470 + 8 MaQaas Plutonic Complex is considered
to have occurred during the exhumation of the Cemis 3 event might also be responsible
for this exhumation.

The cooling history of the Conlara Metamorphic Ctewpafter the Famatinian magmatism is

recorded by K-Ar ages between 440 and 420 Ma ok dad light micas (Steenken et al.,
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1093 2008). Rb/Sr mica-WR isochrons indicate that capiim the Conlara Metamorphic Complex
1094 below the 500°C isotherm occurred at about 439 $Mednken et al., 2004).

1095 Consequently, P— D, history may have taken place during the Pampeamgddy (see
1096 Steenken et al., 2005) which contrasts with tharapsion that the entire evolution of the Sierra
1097 de San Luis could be related to post-Pampean e(éfitsmeyer and Simpson 2004); @ould
1098 be constrained between 497-470 Ma whereas the goumgLO6pez de Luchi et al., 2008) will
1099 be bracketed between ca 450-420 Ma based on K-Acavite ages.

1100 If the peak metamorphism is Pampean or even oldewauld be suggested by the age
1101 calculated on the garnet of the banded schistelthCocha Group, the entire complex must
1102 have remained at temperatures above 500 °C fort difi@uMa. On the contrary, if only one
1103 metamorphic event of Ordovician age has occurteémains difficult to reconcile the 570 Ma
1104 MDA of the protoliths of the metaclastic rocks wilca. 480-470 Ma metamorphic event since
1105 the El Pefion Granite clearly intruded the alreadgtamorphic La Cocha Group and exhibit
1106 metamorphic enclaves.

1107 Based on the P-T calculations on the metaclastksran almost isothermal (?) uplift of ca. 4
1108 km is suggested for the interval Late EdiacarayE@ambrian-Early Ordovician from a peak
1109 pressure, calculated either 5.4 + 0.5 kbar or %.2@®0 kbar for Rfor the metaclastic rockgo
1110 ca. 4.45 + 1.1 kbar calculated fog Dased on Al-in hornblende barometry from one ke
1111 the Las Cafias Pluton.

1112  If migmatization occurred in the interval 500-48@& s may be suggested by the zircon rims in
1113 the sample of the banded schist of Rapela et @162 the age of the crustal derived granitoids
1114 and the regional comparisons (for example Larrowreal., 2012), this event should have
1115 occurred at deeper crustal levels than those milyrexposed by the La Cocha Group. Granite
1116 emplacement in this non migmatitic group that rdsoca 4 km uplift, was controlled by
1117 the late Cambrian-early Ordovician. Thermo-baroioedata from Sierra de Comechingones
1118 document a minimum of 20 km of unroofing of the Paan basement during the early
1119 Cambrian (530 to 510 Ma) (Rapela et al., 1998; @tanet al., 2004).

1120

1121 4.5.SIGNIFICANCE OF THE MONAZITE AGES

1122 The monazites are interpreted to have crystalleftet a medium-grade regional metamorphic
1123 event. Sample P7 is a migmatite of the Santa RasaigfGtaken in the south of the Renca
1124 Batholith has the highest monazitgO¢ contents. When the monazite-xenotime thermometers
1125 which relate XHREE+Y to monazite crystallisation temperaturese applied, maximal
1126 conditions of 600 - 670 °C (Heinrich et al., 199nd 520 to 590 °C (Pyle et al., 2001) can be
1127 estimated for this sample. The sample 104 from $a@ Martin Group exhibits contents
1128 between those of the migmatite and the two sampéesl9-09 and 65-04, of the banded schists
1129 of the La Cocha Group which show similagO¢ contents(Fig. 14b). For sample 65-04 with the
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lowest monazite ¥0O; and XHREE+Y, the monazite crystallization temperature® a
considerably lower, at 500 to 560 °C (Heinrich ket #997) and 400 to 470 °C (Pyle et al.,
2001).

In the study area, temperatures of ca 600 °C wssiged to the host metaclastic rocks of the
470 Ma Las Cafias Complex (Morosini et al., 2019¢mehs in the interval between 448 + 10
Ma to 439 + 7 Ma the basement was at around 5080@ °C, as indicated by the K-Ar
amphibole cooling age for one amphibolite and Krfuscovite cooling ages for pegmatites
(Steenken et al.,, 2006, 2008). Younger muscoviteling ages down to 416 +* 4 Ma in
pegmatites emplaced in the southern sector ob#mta Rosa Group suggest that a temperature
of more than 400 °C may have persisted even irg&thurian.

Monazite analyses yield isochron Th-U-Pb ages nanfiom 446 to 418 Ma. A trend of
decreasing YO; with decreasing age is apparent (Fig. 13, 14). dldest age of 446 + 5 Ma
corresponds to sample P7, located only 500 m soiuthe locality where a K-Ar amphibole
age, of 439 + 7 Ma was obtained. Therefore the mitaage of this sample may represent a re-
equilibration of the monazite on the cooling paftttee basement complex. The monazites in
samples 19-09 from the La Cocha Group and 104 flerSan Martin Group yielded isochron
ages of 434 + 12 Ma and 431 + 8 Ma respectivelg [Blw-Y,O; monazites of the sample 65-04
displays an isochron at 418 + 10 Ma and would yikehrk a late stage of a monazite growth.
On the other hand the observation of a high tentperamonazite with apatite coronas
exclusively in sample P7 suggests a retrogressatim fhese results indicate ages younger than
the 497 to 470 Ma interval of intrusive magmatit¢ivaty and the younger record of zircon
growth at suprasolidus conditions (480 Ma) for riohsx banded schist inside the migmatites of
the Santa Rosa Group. Numerous studies indicateaggresetting in metamorphic monazite
can be due to post-peak dissolution—reprecipitafi@ylor et al., 2014 and references therein)
or heterogeneous annealing of the monazite crigtale (Skrzypek et al., 2018). The stability
field of metamorphic monazite is controlled by butick Ca and Al, and the allanite-monazite
univariant equilibrium is shifted to lower tempena&s when bulk rock Ca decreases (Spear
2010). The calculated assay of Ca is lowest insdmple P7 with the oldest monazite isochron
and higher in the sample 65-04 with the youngeshanite isochron (Fig. 13). This would
support the interpretation that the metamorphic amaea crystallized during decompression
subsequent to Tmax along a clockwise P-T evolutiith sample P7 giving a minimal for P
max. In consequence the calculated CHIME ages wapdesent minimum estimates for the
timing of peak metamorphism and are interpreted¢ading ages from the prograde high T

peak metamorphism probably resulting from post-gha#t assisted recrystallization.

4.6.REGIONAL CORRELATIONS OF THE CONLARA METAMORPHIC COMPLEX
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Regional correlations were based in lithologiestam®rphism, magmatism, crystallization,
metamorphic or cooling ages and detrital zircortgpat Considering all the metaclastic units of
the Eastern Sierras Pampeanas, only the ConlaranMephic Complex in the Sierra de San
Luis was correlated with the Puncoviscana Formatluat is interpreted as a lower grade
metamorphic equivalent of the widespread greensclisiphibolite and granulite facies
metasedimentary rocks, more intensely affectechbyPtampean orogeny (Rapela et al., 1998,
2016; Steenken et al., 2006, 2008; Escayola e2@07; Drobe et al., 2009, 2011: Siegesmund
et al., 2010; Casquet et al.,2018).

The Pringles Metamorphic Complex and the San Laoisnation, the two units immediately to
the west of the CMC (Fig. 1 ), exhibit a youngedimentary record (Steenken et al., 2006,
2008, Drobe et al., 2009, 2011, Lépez de Luchilet2®18, Peron Orrillo et al., 2019 and
references therein) with a Cambrian zircon popotatinat reflects erosion from the early
Cambrian rocks, which are widespread in the Sietea€6rdoba and Comechingones.

The metaclastic rocks of the Conlara Metamorphim@lex and probably more specifically the
banded schist of the La Cocha Group were correlagsgd on lithological and deformational
features with the Ancasti Formation, the Tuclamgstcand finally with similar banded lower
grade rocks of the Puncoviscana Formation (Steeekel., 2006, Martino et al., 2009 and
references therein)

In Figure 16 (a,b) selected pattern of detritat@ir ages from Sierras de Cérdoba, Sierra de
Ancasti and Sierra Brava are included. Data forfthelame Formation are not sufficient for the
calculation of a normalized plot or age pick. Altigh detrital pattern for the Sierras de
Cordoba metaclastic rocks are comparable to thb€&MC, in our analysis we focus on the
lithologies that are similar to the groups of th€I© from which zircon data is available. The
ages (single direct evaporation ages) of individziedon grains of the Tuclame Formation
(Schwartz and Gromet, 2004) vary froni900 to~600 Ma, with groupings between 750 to
550 Ma, around 850 Ma and between 1050 to 950 Kiahwnmade them comparable to the La
Cocha Group. Martino et al. (2009) considered tthet banded schists of the Tuclame
Formation are equivalent to the banded schistettiCocha group and calculated 557 + 25 °C
and 3.9 + 1 kbar for the peak metamorphism. Theutaed pressure is even within error lower
than the one obtained by L6pez de Luchi et al. 2@009) and Morosini et al. (2019) which
might imply higher thermal gradients for this sentof banded schists.

Banded schists were also recognized and studiethenQuilmes, Ambato, Aconquija and
Ancasti mountain ranges, where in most cases twamuphic events with a likely climax of
Famatinan age is described. Available age conséréon the Conlara Metamorphic Complex as
well as detrital zircon patterns indicate a stremgilarity with the Sierra de Ancasti units even

in the regional distribution of the units with migtites flanking banded schists.
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The Sierra de Ancasti (Murra et al., 2011 and ezfees therein) is made up by three main
units: the eastern flank corresponds to the SiBrava Complex in which paragneiss and
migmatite make up the Jumeal member and marldiestseind amphibolite make up the Calera
member. The central sector is mostly formed by bdrgthist of the Ancasti Formation. In the
western flank of the sierra, metasediments of tinea&ti Formation prograde to gneiss and
migmatite of the El Portezuelo Metamorphic-Igne@gmplex. The banded schists of the La
Cocha Group can be correlated with the Ancasti Btion whereas the Santa Rosa and San
Felipe migmatites might be correlated with the &lt€zuelo Metamorphic-lgneous Complex.
The Ancasti Formation records a low-pressure iMetamorphism that was overprinted by a
syn-deformational M event of medium grade. The_Mmetamorphism was assigned to the
Pampean orogen through a Rb-Sr mineral isochrd@24f+ 28 Ma (Knuver and Miller ,1981,
Bachmann and Grauert, 1987). Marbles cropping muhé banded schists exhibit Ediacaran
depositional age of 570-590 Ma based on the tréndSs/°Sr in Neoproterozoic seawater
(Murra et al., 2011). Ordovician I-type granitoidgh crystallization ages of 4.5 and 46&

5 Ma were emplaced in this unit (Dahlquist et2012) and show metamorphic enclaves.

The El Portezuelo Metamorphic-lgneous Complex mposed of migmatites that evolved from
amphibolite to granulite metamorphic facies, reagththermal peak conditions of 670 °C and
5.3 kbar for garnet migmatites to 740°C and 4.7 kbacordierite migmatites (Larrovere et al.,
2011). U-Pb geochronology on monazite grains witthie leucosome records the time of
migmatization between 477 and 470 Ma. In the 8Side Quilmes, located north of Sierra de
Ancasti, Buttner et al. (2005) indicated that thenawite and titanite U-Pb data constrain the
metamorphic peak in migmatites and calc-silicaieksoat or slightly prior to~470 Ma. It is
remarkable that migmatization in the El Portezu@tmmplex and in Sierra de Quilmes yielded
the same age as the main magmatism and actualthjnwerrors, the same age as the
magmatism of the CMC. In these metamorphic unigmigoids intrude an already metamorphic
host that is also preserved as rafts inside migezati

We suggest that the Conlara Metamorphic Complexhimigcord two events an older late
Ediacaran to Early Cambrian metamorphic event an@ualovician partial melting high T/P
event that at the present level of exposure isrdstl as B controlled granitoid magmatism
with S3 related biotite in the La Cocha Group anabably as prograde sillimanite in gneisses
and migmatites. Larrovere et al. (2011) proposedekistence of a regional mid-crustal high
thermal zone during lower-medium Ordovician timeattwill be expressed as the migmatite
terranes in Sierra de Ancasti, Sierra de AmbatoSirda de Aconquija. We propose that the
migmatites of the Conlara Metamorphic Complex cooddrespond to the same event that

overprinted a former Pampean event preserved indhanigmatitic rocks.

SEINAL REMARKS
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The Conlara Metamorphic Complex, the easternmasiptex of the Sierra de San Luis, is a
key unit to understand the relationship betweenldte Proterozoic-Early Cambrian Pampean
and the Upper Cambrian-Middle Ordovician Famatin@ogenies of the Eastern Sierras
Pampeanas. is divided in four groups based on ¢meirndnt lithological associations: San
Martin and La Cocha correspond mainly to schists smme gneisses and Santa Rosa and San
Felipe encompass mainly gneisses, migmatites atmbgneisses. The Conlara Metamorphic
Complex underwent a polyphase metamorphic evolufitve penetrative S, foliation was
affected by upright, generally isoclinal, N-NE tdémg D, folds that control the NNE outcrop
patterns of the different groups. An earlier, r&jds preserved in microlithons. Discontinuous
high-T shear zones within the schists and mignetie related with Pwhereas some fine-
grained discontinuous shear bands attest fog deflormation phase (Fig. 18). Geochemistry of
both non-migmatitic metaclastic units and amphtbeslisuggest that the Conlara Metamorphic
Complex represents an arc related basin in whi€ANhdicate a pre- 570 Ma deposition of
the sediments (Steenken et al., 2006, Drobe €2@09). The 497-470 Ordovician magmatism
indicates an ample interval between sedimentatigheanplacement of granitoids in the already
metamorphic complex as indicated by both clearcoutacts and PD, deformed enclaves of
metaclastic host. No reliable records of either pean aged detritus or magmatic ages
belonging to the peak of the Pampean Orogeny vgeréar found. The garnet PbSL age of 564
+ 21 Ma for M, metamorphism of the banded schists of the CMC @vsalfar suggest that;D

D, history might have occurred at very early stageh@®Pampean orogeny.
Pressure-temperature pseudosections were calcutatezhe amphibolite of the Santa Rosa
group using the geologically realistic system MNNGBKASHTO (MnO-NaO-CaO-K0-FeO-
MgO-Al,O;-SiO-H,0-TiO,-Fe0s3). Peak metamophic conditions fMndicate 6 kbar and 620
°C. The absence of clinopyroxene limits the maxinemperature. Late chlorite on the rims
and in cracks of garnet, along with titanite rims ibmenite and matrix plagioclase breaking
down to albite suggests that the P-T path movel dawn T.

D; is constrained by the syn-kinematic emplacemerthefpervasively solid-state deformed
granitoids like the Early Ordovician El Pefién aredTapera plutons which bear xenoliths of the
host banded schists, show clear cut contacts wéh host and display a folded cartographic
pattern with @ NE- trending axial planes. This evidence arguesnesgthe assumption that the
entire metamorphic evolution of the Sierra de Sais lcould be assigned to post-Pampean
events.

D, deformation is bracketed between the 450-420 wgoliges of muscovite booklets of
pegmatoids and amphibole age in one amphibolite.

Monazite analyses yield isochron Th—U—-Pb ages ngnfgom 446 to 418/1a. The oldest age of
446 + 5 Ma correspond to a migmatite from the S&uaa Group. Monazites in samples from

the La Cocha and the San Martin group crystallizaedecreasing temperatures. The younger
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isochron age of 418 + 10 Ma corresponds to lg@sYmonazites in one sample of the La
Cocha Group. New CHIME monazite ages presented liezly represent post-peak fluid
assisted recrystallisation that are similar to ailmple and muscovite cooling ages. Therefore
the monazite ages may represent a re-equilibratidhe monazite on the cooling path of the
basement complex.

The restricted low greenschist faciess Dverprint is comparable (both in strike and
composition) to the mylonitic paragenesis charétier of Rio Guzman Shear Zone, the
Devonian age of which closely matches the regibiwlte cooling ages of the CMC and would
have been responsible for final unroofing of thenptex (Fig. 18).

Regional comparisons suggest a strong similaritis e Ancasti Formation as well as with the
El Portezuelo Fm even in the spatial dsitributioh the units. Further work on the
metamorphism and age dating are necessary to é&lguranstrain the tectonic evolution of the
CMC since the age of metamorphism and crustal-ddrimagmatism would indicate high

temperature in the crust over a time span of alhd8tMa
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CAPTIONS

Appendix 1. Analytical procedures

Supplementary Material 1 EMPA data on minerals fsample 21-3
Supplementary Material 2.Figure TXCa for sample321-
Supplementary Material 3 Figure TXFe3 for sample321

Supplementary Material ©nline Resource. Selected electron microprobe analyses of metanmrph
monazite from biotite plagioclase paragneissesaRa¢ given in wt%. Td, and ThQ* are calculated
from Th and U after Suzuki et al., (1994). Monazaitges from single analyses are given withegror, see
text. Mnz - monazite single grain; Data from refer® monazite Madmon (Schulz and Schissler 2013) is
weighted average of 20 single analyses performethglihe sessions on the samples. The monazites
were analysed with a JEOL JXA-8230 at Institute Méterial Science of the TU Bergakademie
Freiberg/Saxony, Germany.

Table 1: Major and minor element contents of thetaclastic rocks of the Conlara Metamorphic
Complex. Major elements are expressed in % weiglripr elements in ppm. Analytical techniques are
presented in the text. Location of the samplesratieated.

Table 2: Major and minor element contents of sektcamphibolites of the Conlara Metamorphic
Complex. Major elements are expressed in % weighipr elements in ppm. Analytical techniques are
presented in the text. Location of the samplesralieated.

Table 3 Results from automated SEM Mineral Liberation As&éy(MLA) of petrographic thin sections
of monazite-bearing biotite plagioclase paragnsesples. Modal mineralogy of major phases, from
XMOD point counting routine with ~POEDX analyses per thin section. Ca and Al bulk rock
compositions in wt%, as calculated assay from matdakralogy. Area, number of grains and grainsize
as MD50 (grainsize at 50 wt% of cumulative graiesilistribution) in um for zircon (Zrn), monazite
(Mnz) and xenotime (Xtm) from automated SEM Spanade Lineup(SPL) routine. The monazite grains
are in contact (locked) with diverse other phaassllanite and epidote (Aln + Epi), apatite (Agjtite
(Biotite), ilmenite (Ilm), plagioclase (Pl) and qtm (Quartz). These microstructural relationships a
reported as ternary locking in %. Note high degoédernary locking of monazite with allanite and
epidote in sample 65-04.

Figure 1 a) Geological map of de Conlara Metamarfdomplex includig the location of the monazite
samples and the amphibolite sample; b) Geologikelck of the Eastern Sierras Pampeanas with the
location of the study area.

Figure 2: Field photografies of the diagnostic eas of the Conlara Metamorphic Complex groups: a)
San Martin Group, eastern belt; note the relitiarpsiitic pelitic bedding at the upper left cornertlod
image and the folded pegmatite dike b) La Cochau@iomediatelly east of La Cocha hamlet: note that
apart from the banding a difuse relictic beddingbserved; ¢) Santa Rosa group inmediately weStaaf
Pablo d) San Felipe Group south of the Renca Bigtthol

Figure 3: Field images of the Conlara Metamorphitn@lex groups: a) detail of the F2 folds that affec
S2 foliation in the San Martin Group fine grain@thist west of Las Lagunas; b) Detailed outcropufiest

of the La Cocha Group. Note the folding and thenatation of the quartz-plagioclase veins as well a
melt migration towards the hinges of the #lds c) Detail of the texture of the Santa Rosaug
migmatites d) Detail of diatexite of San Felipe @isouth of the Renca Batholith. An amphibolitesken
is observed.

Figure 4: Microscopic images of the San Martin Groa) fine grained biotite schist. Flattening oé th
quartz with the major axis parallel to the f8liation is present. A muscovite blast overgrogvithe $
foliation is observed; b) biotite-muscovite fineagred schist that is affected by f€élated crenulations; c)
tourmaline schist, nematoblastic tourmaline-bidttgers alternate with quartz -scarce plagioclagers;
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d) fine grained biotite-muscovite schist interlag@rwith the banded schist in the La Cocha Group.
Abbreviations from Whitney and Evans (2010).

Figure 5: Microscopic images of the La Cocha Graajpspaced foliation in biotite muscovite banded
schist S1 appears a relic folded continuous follatvhereas Sis parallel to the banding defimed by
mica-rich and quartz domains; b) spaced folatidimdd by banding in the hinge of thg félds in which
a S is developed paralell to the axial plane. In thebk S is parallel to § ¢) muscovite blast

overgrowing 9/Ss.
Abbreviations from Whitney and Evans (2010).

Figure 6. Microscopic imagesof the Santa Rosa Grayp .y and k.yin gneiss b) prograde sillimanite

in the mesosome of a stromatite c¢) folded fibrokilimantic layers inside a muscovite blast that
overgrows the lepidoblastic biotite folia. This gaenis located near the eastern contact of theralent
belt; d) microshears made up by recristallized guarosaic in a leucosome. Abbreviations from Whijtne
and Evans (2010).

Figure 7. Microscopic images of the San Felipe @r@) texture of the biotite rich mesosome. Note th
lobate borders between plagioclase and the muscbldist; b) detail of the muscovite blast in which
fibrolitic sillimanite is present.Note also sombrblite inside the plagiocase in contact with thesoovite
blast; c) biotite rich mesosome in stromatite Nihte lobate borders between plagioclase and qudtz;
detail of microshear in the diatexite. Note thesgtere shadows tails at both sides of the plagiediesst.
Tiny recristallized biotite is associated with thmsaics of polygonal quartz e) general texturehef t
orthogneiss. Discontinuous biotite-muscovite faia parallel to flattened quartz aggregates. fijgfain

a plagioclase and alkaline feldspar aggregatesateoboundaries as well as grain boundary migration
indicate high temperature deformation. Abbreviaginom Whitney and Evans (2010).

Figure 8: Metaclastic units of the San Martin ana Cocha groups a) Chemical classification of
metaclastic rocks (Herron 1988). Average compasstiof magmatic rocks were taken from Albarede
(2003); b, ¢ source maturity: b) Chemical indexaldération (CIA, (Nesbitt and Young, 1982): {®:m/
(Al,0sm+ CaOm* +Na20m +K20m)] x 100). The arrows représdeal weathering trends of granite
(right hand side), granodiorite (central arrow) aodalite (left hand side). A nearly parallel demhent
compared to the ideal weathering trend is obsefeedhe whole data collection. PI: Plagioclase, -
kaolinite (Knl), gibbsite (Gib), chlorite (Chl), rsaovite (Ms), Ksp: Potassium feldspar. ¢) Th/Sc vs.
Zr/Sc diagram after McLennaet al., (1993), Zr/Sc is a measure of upper crystal rewaykivhereas
Th/Sc measures mafic vs felsic input. Numbers iflettte mean values for 1, Ocean Island Arc (OIA),
2, Continental Island Arc (CIA), 3, Active Contirtah Margin (ACM) and 4, Passive Margin (PM)
according to Bathia and Crook (1986); d, e, f, ®etmnic setting discriminant diagrams. d) Ti@.
FeOsT + MgO (Bhatia 1983), e) Ti/Zr vs. La/Sc (BhatiadaCrook 1986); f)(La/Yky vs. Eu/Eu*
diagram. Boxes correspond to the compositions teddior Mc Lennan et al., (1990) for sedimentary
basins of known tectonic setting.

Figure 9: Amphibolite of the southern sector of thenlara Metamorphic complex. a) Major element
classification of Jensen (1976). Major elementsesged in cations, b) trace element based classific
(Pearce 1996); d-c) Primitive mantle normalizedn(&uad Donough 1995) multielement plots e) REE f)
trace element. Plots are set at a similar y-scatipare the enrichment regarding the primitivethea
model. MORB, MORB+BAB and BAB averages from Galalkt2013.

Figure 10: a-d) Major and Trace-elements-basednéctetting discrimination plots a) MnO-TiO2-P205
diagram (Mullen 1983). Although the samples plothie MORB field, amphibolies from CMC exhibit
higher TiO2 than MORB or BAB; b) Nb-Zr-Y diagram BEhede (1986). Samples of the amphibolites
are enriched in Nb regarding MORB and BAB which Vdoepresent the arc component; c) Zr-Ti-Sr plot
(Pearce and Cann 1973Amphibolie samples plot iwdet the MORB and island arc tholeiite; d) V-Ti-
Sc plot (Vermeesch 2006). Samples plot in the M@iRH in a central position next to the limit beteve
different fields. Note that four independent partere and ratios suggest that the amphibolites ef th
CMC have a MORSB signature combined with HFSE arld=L énrichment which suggest a subduction or
crustal component.

Figure 11: a) Photomicrograph of sample 21_3 shgwiineral relationships between garnet and the
matrix; b) Photomicrograph showing the main minexséemblage of the sample, the inset shows the
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growth of a titanite halo on matrix ilmenite; c) Mdiral chemical zoning of a garnet porphyroblastheia
is 300 um in size.

Figure 12: Pseudosection: Final P-T diagram form@an21-3 with a reduced CaO content from the
original whole rock composition. Additional diagrarshow garnet compositional isopleths fQfX Xars,
Xspsand Xoyr. The %oy, Xam and Xgps composition found in the garnet is given as thkefields on the P-

T pseudosection and the stability field of albgetie blue region on the P-T diagram. The inteegk&-T
path is given by the dashed arrow.

Figure 13: (a)-(d) Th-U-Pb chemical model ages ohazite (Mnz) in biotite-plagioclase paragneisses.
Total ThGQ* vs PbO (wt%) isochron diagrams. TkiGs ThO, + o, equivalents expressed as ThO
Regression lines with the coefficient of determimatR, are forced through zero (Suzuki et al., 1994;
Montel et al., 1996). Weighted average ages in M MSWD and minimal error ofare calculated
from the single analyses belonging to an isochroco@ing to Ludwig (2001). The symbols mark
analyses belonging to a monazite age population defohing isochrons. Al and Ca are bulk rock
compositions in wt% from Table 1.

Figure 14: Mineral chemistry of monazite and disitions of monazite Th-U-Pb chemical ages. (a)
Diagram XGdPQvs XYPQ, with compositions above the garnet (Grt), stateqSta), sillimanite (Sil)
metamorphic mineral zones as indicated by Pylé. ¢2@01). (b) Monazite YO; vs age; note position of
sample 65-04 with the youngest monazite isochryrivignazite LREE and HREE+Y compositions in
mole fractions, plotting along a common trend (d)+U vs Ca diagram with a common cheralite
substitution trend of the monazites in the paragssamples.

Figure 15: Detrital zircon provenance of the metatit rocks of the La Cocha and San Martin groups.
Sample data were taken from Drobe et al. (2009peRaet al. (2016), Steenken et al. (2006): a)
Probability Density Plots (Frequency vs age). N similarity in the detrital peak ages and shafe
remnant peaks between each group despite thedifferumber of zircons. Cryogenian age peak are
higher in the La Cocha Group samples; b)Cumuldtieguency proportion vs the upper crustal residence
time for detrital zircons (crystallization minus pissitional age), and tectonic setting of the basiss
proposed by Cawood et al., (2005). Independentlyhef number of zircons that are insufficient for
samples A73-05 and A25-01 the shape is similar @rdespond to collisional related basins. Samples
16002 and A73-05 are banded schist from the La &@roup; 16004 and A25-01 belong to fine grained
schists of the San Martin Group.

Figure 16: Comparison of the detrital zircon proaace of the metaclastic rocks of the La Cocha ad S
Martin groups of the Conlara Metamorphic Compleihveome metaclastic units of Sierra de Cérdoba,
Sierra de Ancasti and Sierra Brava: a) Normaliziecbn plots (Gehrels 2014). Note that although the
dominant peaks are of Brasiliano and Grenvilliarsaghe relative proportion of each zircon popalati
changes. References : (1) lannizzotto et al., 2(@)3Escayola et al., 2007;(3) Rapela et al., 2(4p
Drobe et al., 2009;(5) Steenken et al., 2006;()eRaet al., 2007;b) Age picks (Gehrels et al.,&00
Ediacaran, Tonian and Stenian (Grenvillian agegkpeare dominant whereas Cryogenian ages are
abundant in the metaclastic units located alongethetern sector of the Eastern Sierras Pampeanas of
Brasiliano and Grenvillian ages.

Figure 17: La Tapera granite, images show theiogiship between Pand granitoid emplacement and
textures: a) sharp contact between the granitoidthe banded schist of the La Cocha Group, note bot
one metamorphic enclave and the parallelism betwbe contact and the penetrative foliation in the
granite; b) photomicrography of the same contaethich the parallelism between biotite flakes amel t
limit between the two units can be observed, nad¢ the $ banding is sharply cut ¢) Photomicrography
of submagmatic and subsolidus high-temperatureasiarctures, profuse fine-grained quartz-plagiaelas
mosaics composed of equant, strain-free grainsahbgrains in plagioclase.

Figure 18: Summary of the tectono metamorphic diaiuof the Conlara Metamorphic Complex. See
text for explanations.



-The Conlara Metamorphic Complex, the easternmost complex of the Sierra de San Luis, is a
key unit to understand the relationship between the late Proterozoic-Early Cambrian Pampean
and the Upper Cambrian-Middle Ordovician Famatinian orogenies of the Eastern Sierras
Pampeanas.

- The CMC is divided in four groups based on the dominant lithological associations: San Martin
and La Cocha correspond mainly to schists and some gneisses and Santa Rosa and San Felipe
encompass mainly paragneisses, migmatites and orthogneisses.

-The Conlara Metamoprphic Complex underwent a polyphase metamorphic evolution starting
at the Neoproterozoic and culminating in the early Ordovician.

-Peak metamorphic conditions (M,) indicate 6 kbar and 620 °C. Late chlorite on the rims and in
cracks of garnet, along with titanite rims on ilmenite and matrix plagioclase breaking down to
albite suggests that the P-T path moved back down.

- CHIME monazite analyses yield isochron Th—U—Pb ages ranging from 446 to 418 Ma which
suggest post-peak fluid assisted recrystallisation and are similar to amphibole and muscovite
cooling ages. Therefore the monazite ages may represent a re-equilibration of the monazite on
the cooling path of the basement complex.



