30 research outputs found
Interferon-λ rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease
Tissue fibrosis is a core pathologic process that contributes to mortality in ∼45% of the population and is likely to be influenced by the host genetic architecture. Here we demonstrate, using liver disease as a model, that a single-nucleotide polymorphism (rs12979860) in the intronic region of interferon-λ4 (IFNL4) is a strong predictor of fibrosis in an aetiology-independent manner. In a cohort of 4,172 patients, including 3,129 with chronic hepatitis C (CHC), 555 with chronic hepatitis B (CHB) and 488 with non-alcoholic fatty liver disease (NAFLD), those with rs12979860CC have greater hepatic inflammation and fibrosis. In CHC, those with rs12979860CC also have greater stage-constant and stage-specific fibrosis progression rates (P<0.0001 for all). The impact of rs12979860 genotypes on fibrosis is maximal in young females, especially those with HCV genotype 3. These findings establish rs12979860 genotype as a strong aetiology-independent predictor of tissue inflammation and fibrosis
Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
The standard Cold Dark Matter (CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade’s experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density m, and the amplitude or rate of the growth of structure (σ8, f σ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions
IFN-lambda3, not IFN-lambda4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis
Genetic variation in the IFNL3-IFNL4 (interferon-lambda3-interferon-lambda4) region is associated with hepatic inflammation and fibrosis. Whether IFN-lambda3 or IFN-lambda4 protein drives this association is not known. We demonstrate that hepatic inflammation, fibrosis stage, fibrosis progression rate, hepatic infiltration of immune cells, IFN-lambda3 expression, and serum sCD163 levels (a marker of activated macrophages) are greater in individuals with the IFNL3-IFNL4 risk haplotype that does not produce IFN-lambda4, but produces IFN-lambda3. No difference in these features was observed according to genotype at rs117648444, which encodes a substitution at position 70 of the IFN-lambda4 protein and reduces IFN-lambda4 activity, or between patients encoding functionally defective IFN-lambda4 (IFN-lambda4-Ser70) and those encoding fully active IFN-lambda4-Pro70. The two proposed functional variants (rs368234815 and rs4803217) were not superior to the discovery SNP rs12979860 with respect to liver inflammation or fibrosis phenotype. IFN-lambda3 rather than IFN-lambda4 likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis