
ARTICLE

Received 13 Jul 2014 | Accepted 28 Jan 2015 | Published 5 Mar 2015

Interferon-l rs12979860 genotype and liver
fibrosis in viral and non-viral chronic liver disease
Mohammed Eslam1, Ahmed M. Hashem2, Reynold Leung1,3, Manuel Romero-Gomez4, Thomas Berg5,6,

Gregory J. Dore7,8, Henry L.K. Chan9, William L. Irving10, David Sheridan11,12, Maria L. Abate13, Leon A. Adams14,

Alessandra Mangia15, Martin Weltman16, Elisabetta Bugianesi13, Ulrich Spengler17, Olfat Shaker18,

Janett Fischer5, Lindsay Mollison19, Wendy Cheng20, Elizabeth Powell21,22, Jacob Nattermann17,

Stephen Riordan23, Duncan McLeod24, Nicola J. Armstrong25, Mark W. Douglas1, Christopher Liddle1,

David R. Booth3, Jacob George1,*, Golo Ahlenstiel1,* & the International Hepatitis C Genetics

Consortium (IHCGC)w

Tissue fibrosis is a core pathologic process that contributes to mortality in B45% of the

population and is likely to be influenced by the host genetic architecture. Here we demon-

strate, using liver disease as a model, that a single-nucleotide polymorphism (rs12979860) in

the intronic region of interferon-l4 (IFNL4) is a strong predictor of fibrosis in an aetiology-

independent manner. In a cohort of 4,172 patients, including 3,129 with chronic hepatitis C

(CHC), 555 with chronic hepatitis B (CHB) and 488 with non-alcoholic fatty liver disease

(NAFLD), those with rs12979860CC have greater hepatic inflammation and fibrosis. In CHC,

those with rs12979860CC also have greater stage-constant and stage-specific fibrosis pro-

gression rates (Po0.0001 for all). The impact of rs12979860 genotypes on fibrosis is maximal

in young females, especially those with HCV genotype 3. These findings establish rs12979860

genotype as a strong aetiology-independent predictor of tissue inflammation and fibrosis.
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C
hronic fibro-proliferative diseases account for B45% of all
deaths in the developed world1. End-stage liver disease is a
sine qua non of this phenomenon, as fibrosis culminating

in cirrhosis is the principal cause of liver-related morbidity and
mortality2. There are probably ‘core’ and ‘regulatory’ pathways, as
well as susceptibility genes, that play a role in fibrosis evolution
and they are likely aetiology independent3; however, these have
yet to be defined.

Liver disease develops as a consequence of any number of
insults, with chronic viral hepatitis B and C (CHB and CHC) and
non-alcoholic fatty liver disease (NAFLD) among the most
prevalent. These three diseases therefore offer an opportunity to
understand the role of genetic factors in the evolution of liver
fibrosis and to determine whether they are aetiology independent.

Emerging evidence suggests that host genetics influence liver
fibrosis, particularly variants in genes controlling the immune
and inflammatory response pathways4–6. In this context, the
discovery of polymorphisms (rs12979860 and rs8099917) in the
interferon-l (IFN-l) region, represented a breakthrough in
hepatitis C research, being the strongest host factor associated
with viral clearance after IFN-based therapy7–10. As the
rs12979860 is located within intron 1 of the newly discovered
IFN-l4 (IFNL4) gene11, rs12979860 is here referred to as an
IFNL4 single-nucleotide polymorphism (SNP).

rs12979860 ‘responder’ genotypes have been shown in several
reports to be associated with greater hepatic inflammation12–14.
However, whether rs12979860 genotype predicts liver fibrosis
progression is controversial, in particular for diseases other than
CHC12–21. A recent study added to this controversy by
demonstrating that although CHC patients with the rs12979860
CC responder genotype had greater hepatic necroinflammation
and worse clinical outcomes, they had lower mean Ishak fibrosis
scores, compared with those with rs12979860 CT/TT genotypes,
and no association with fibrosis progression on paired biopsies13.
These findings are hard to reconcile, as fibrosis is a consequence
of hepatic inflammation1,22 and prospective paired biopsy cohorts
clearly demonstrate that necroinflammatory grade on initial liver
biopsy is the best predictor of fibrosis progression23,24. A recent
meta-analysis failed to resolve this conundrum, as although the
authors demonstrated that rs12979860 CC and rs8099917 TT
genotypes were not associated with severe inflammation in
treatment–naive patients, rs12979860 CC was only weakly
associated with fibrosis (P¼ 0.04)25, probably reflecting the
inter-study variability in the outcomes.

In the present study we sought to clarify the impact of
polymorphisms in rs12979860 on the progression of liver
inflammation and fibrosis in a large cohort of patients with
CHC; to explore the interactions of rs12979860 genotype with
host and viral factors including age, gender and viral genotype
that might modulate this effect; and to explore the impact of
rs12979860 genotype on liver fibrosis in other viral (CHB) and
non-viral (NAFLD) liver diseases. We demonstrate that IFNL
genotype is a strong predictor of hepatic inflammation and
fibrosis, independent of disease aetiology, and provide evidence
that this risk is modulated by clinical factors (gender, age and
HCV genotype).

Results
Patient characteristics. The study comprises 4,172 patients
including 3,129 with CHC, 555 with CHB and 488 with NAFLD.
The genotype distribution of the two IFNL SNPs (rs12979860 and
rs8099917) was in Hardy–Weinberg equilibrium (Supplementary
Table 1). For CHC, 3129 Caucasian patients were enroled. The
baseline demographic, laboratory and histologic data are shown
in Supplementary Table 2.

For the CHC cohort, the median age was 44 years, 63% were
male, 73% were infected with HCV genotype 1 and 14% had
heavy alcohol consumption (Z50 g daily). With regard to
rs12979860 genotypes, 36% of patients had CC genotype, 49%
CT and 15% TT. Patients (49.4%) had significant fibrosis
(Metavir score F2–4), 43.3% had moderate/severe necroinflam-
mation (Metavir A2–A3) and 18.2% had moderate–severe
steatosis.

Choice of the genetic model. The co-dominant and dominant
models were similarly able to adequately address the association
between rs12979860 and liver fibrosis, regardless of aetiology. The
dominant model was the most appropriate, as it had the lowest
Akaike information criterion (AIC) value (Supplementary
Table 3) Thus, all results are presented using the dominant
model.

IFNL genotype hepatic inflammation and fibrosis in CHC. By
multiple logistic regression analysis, Subjects with rs12979860 CC
had higher necroinflammatory activity (Fig. 1a; odds ratio (OR):
2.11, 95% confidence interval (CI): 1.82–2.45; Po0.0001).
Subjects with rs12979860 CC also had higher significant fibrosis
(ZF2) (Fig. 1b; OR: 1.63, 95% CI: 1.24–2.51; Po0.0001).
Univariate and multivariate analysis of factors associated with
fibrosis in cross-sectional analysis (n¼ 3,129) is shown in Table 1.
In univariate analysis, apart from rs12979860, significant fibrosis
was associated with the previously reported risk factors of older
age, male sex, higher body mass index (BMI), higher alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase, g-glutamyl transpeptidase (GGT), bilirubin
and lower platelet counts, infection with HCV genotype 3 and
with moderate–severe hepatic inflammation. In multivariate
analysis, rs12979860, age, sex, AST, GGT, platelets, HCV
genotype 3 and hepatic inflammation remained independently
associated with significant fibrosis. Alcohol was not associated
with fibrosis (Table 1). We further investigated the association of
alcohol use categorized as quintiles; this analysis also demon-
strated no significant association with liver fibrosis. As data
regarding alcohol intake are self-reported, the possibility of lack
of standardization cannot be excluded. HCV genotype 1 was
not associated with significant fibrosis (P¼ 0.2). Further sub-
categorization was not feasible, owing to the small numbers with
genotype 2 and 4.

Association of clinical factors with the rs12979860 genotype.
As previously reported12,14, patients with rs12979860 CC
genotype had higher median ALT, AST, GGT, bilirubin level
and lower platelet counts compared with non-CC genotypes
(Po0.001 for all) at the time of liver biopsy (Supplementary
Table 4). Patients with rs12979860CC genotype were also more
likely to be infected with HCV genotype 3 than the CT and TT
genotypes (51.7% versus 48.3%, OR: 1.78, 95% CI: 1.28–2.48;
P¼ 0.0001).

IFNL genotype hepatic inflammation and fibrosis progression.
The baseline characteristics were similar among subjects included
and not included in the fibrosis progression analysis sub-
population (that is, estimated duration of infection, n¼ 1,312).
The proportion of patients with a rapid fibrosis progression rate
(FPR) (that is, higher than the median) was higher for rs12979860
CC than rs12979860 CT/TT (58% versus 42%; P¼ 0.0001). This
association remained independently predictive in a multiple
logistic regression model (OR: 1.58, 95% CI: 1.26–1.99;
Po0.0001; Supplementary Table 5).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7422

2 NATURE COMMUNICATIONS | 6:6422 | DOI: 10.1038/ncomms7422 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


As fibrosis progression may not be constant over time22 and
FPR assumes linearity, complementary analytical approaches
were undertaken to avoid this source of bias. Using Cox
proportional hazards, rs12979860 CC remained independently
associated with an increased hazard of progression to significant
fibrosis (adjusted hazards ratio: 1.41, 95% CI: 1.21–1.64;
Po0.0001; Fig. 1c). We additionally computed stage-specific
progression rates using the Markov maximum likelihood
estimation. Again, the rs12979860 genotype remained predictive
of fibrosis progression (Po0.0001). Interestingly, the effect on
fibrosis of the rs12979860 CC genotype was stronger at early
fibrosis transitions (F0 to F1 and F1 to F2) compared with later
stages (F2 to F3 and F3 to F4; Fig. 1d).

To further confirm the association of rs12979860 genotype with
fibrosis, we assessed 106 patients with paired liver biopsies. In this
cohort, the median duration between biopsies was 6 years
(characteristics in Supplementary Table 6) and there was greater
progression in inflammation (Z2 points) and fibrosis (any
progression and Z2 points) in the responder genotypes of both
rs12979860 and rs8099917 SNPs, whereas the association with
FPR and the proportion of patients with any or Z2 points
fibrosis progression was significant only for rs8099917
(Supplementary Table 7). Overall, similar results were observed
with the responder variant of rs8099917 for all analyses.

In toto, these results demonstrate that responder rs12979860
and rs8099917 genotypes are associated with increased liver
fibrosis and with more rapid fibrosis progression in CHC.

Interaction of rs12979860 with fibrosis risk factors. Using
stratification analysis, we examined the association of rs12979860

genotype with significant fibrosis by different known risk factors
for fibrosis progression (that is, age, sex, alcohol consumption,
ALT (a surrogate marker of necro-inflammation) and HCV-
genotype) categories. As shown in Table 2, the results for
rs12979860 genotype were significantly more prominent in
younger (o40 years) females and those with HCV genotype 3
infection compared with younger (o40 years old) males with
non-genotype 3 infection. As age in general and reproductive age
in females are established risk factors for fibrosis26,27, we stratified
the gender association according to age. Interestingly, the effect of
gender was more prominent in younger (o40 years) compared
with older females (OR: 2.88, 95% CI: 2.02–5.29 versus OR: 1.94,
95% CI: 1.23–3.05; P¼ 0.01) and to a less extent in younger (o40
years) compared with older males (OR: 1.69, 95% CI: 1.27–2.26
versus OR: 1.56, 95% CI: 1.22–2.03; P¼ 0.6 and P¼ 0.001 for
trend) (Fig. 2a).

To further confirm this observation, we explored by stratifica-
tion analyses the associations of rs12979860 genotype in the
fibrosis progression sub-cohort (that is, estimated duration of
infection). Overall, as reported previously, women had slower
fibrosis progression than men (median FPR was 0.071 versus
0.087; P¼ 0.01). The association of rs12979860 CC with fibrosis
progression was more prominent in younger (o40 years)
compared with older females and younger versus older males
(P¼ 0.001 for trend; Fig. 2b).

In addition to the stratified analysis, there was also evidence of
significant multiplicative interaction with sex and age. No
statistically significant multiplicative interaction was found
between rs12979860 genotype and HCV genotype 3. After
allowance for multiple testing, ALT and alcohol consumption
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Figure 1 | IFNL genotype and hepatic inflammation and fibrosis. (a) rs12979860 genotype and hepatic inflammation degree in the cohort of patients with

chronic hepatitis C (n¼ 3,129). Pearson’s w2-test and Fisher’s exact test were used to compare hepatic inflammation rates. (b) rs12979860 genotype and

liver fibrosis stage in the cohort of patients with chronic hepatitis C (n¼ 3,129). Pearson’s w2-test and Fisher’s exact test were used to compare hepatic

fibrosis rates. (c) Multivariate cox regressions analysis of rs12979860 genotype on the cumulative probability of progression to moderate/severe (ZF2)

fibrosis after adjusting for covariates (age, gender, BMI, duration of the infection, HCV genotype, inflammation progression and basal ALT, AST, GGT,

platelets, bilirubin and alkaline phosphatases) in 1,312 patients with an estimated duration of HCV infection. Bars indicate 95% CIs. (d) Stage-specific rates

and 95% CIs of fibrosis progression according to rs12979860 genotype in 1,312 patients with an estimated duration of HCV infection. FPRs were obtained

using the Markov maximum likelihood estimation. P-values were obtained using a likelihood ratio test comparing models with and without rs12979860

genotype. FPRs were significantly increased for the rs12979860 CC genotype compared with rs12979860 non-CC (P¼0.0001). The influence of

rs12979860 CC genotype was more important for early compared with late fibrosis stage transitions. Bars indicate 95% CIs.
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yielded no significant evidence of an interaction with rs12979860
genotypes (Table 2).

Lastly, we investigated the joint effect of rs12979860 genotype
with age and sex. There was further evidence of interaction with
sex, as males with rs12979860 CC had an increased OR for
significant fibrosis (OR: 2.53, 95% CI: 2.28–2.85; OR: 1.4, 95% CI:
1.16–1.68; and OR: 1.73, 95% CI: 1.52–2.23; P¼ 0.002 for trend),
compared with the reference group (females without CC
genotypes, females with CC genotypes and males without the
CC genotype, respectively). Of note, the distribution of the
rs12979860 SNP and the median duration of infection until time
of biopsy were not significantly different between males and
females.

We also demonstrated a joint effect of rs12979860 genotype
and age at time of biopsy. Thus, subjects over 40 years old with
rs12979860 CC had an increased OR of significant fibrosis (OR:
3.91, 95% CI: 3.13–4.9; OR: 2.35, 95% CI: 1.94–2.85; OR: 1.79,
95% CI: 1.4–2.28, respectively; Po0.0001 for trend) compared
with the reference group (younger than 40 years old without CC
genotype, younger than 40 years old with CC genotype and over
40 years old without the CC genotype, respectively).

Using logistic regression, a striking interaction between the
rs12979860 SNP, age and gender was observed. Males over 40
years with rs12979860 CC had an increased OR for significant
fibrosis (OR: 7.58, 95% CI: 5.52–9.38) compared with the
reference group (female subjects younger than 40 years old with

non-CC genotypes; Po0.0001). Overall, similar results were
observed with rs8099917.

Taken together, the rs12979860 genotype demonstrates inter-
actions with age and sex in mediating liver fibrosis, being more
obvious in young females, but also demonstrating interaction
with the classic risk factors (older age and male gender) in
increasing fibrosis.

Association of rs12979860 with fibrosis in other diseases.
CHB cohort. The baseline demographic, laboratory and histologic
data are shown in Supplementary Table 8. After adjustment for
age, ethnicity, HBV-DNA levels, liver enzymes and HBe-Ag
status, rs12979860 CC was associated with hepatic inflammation
(OR: 4.36, 95% CI: 2.46–7.74; Po0.0001). Likewise, rs12979860
CC was associated with severe fibrosis (OR: 2.75, 95% CI: 1.23–
6.14; Po0.001; Table 3 and Fig. 3a).

NAFLD cohort. The baseline demographic, laboratory and
histologic data for this cohort are shown in Supplementary
Table 9. To examine whether the association of rs12979860
genotypes with the histological severity of NAFLD is independent
of the well-known risk factors for liver damage in NAFLD, we
considered in the analysis cardio-metabolic risk factors such as
diabetes, hypertension, lipid profiles and homeostasis model
assessment-estimated insulin resistance (HOMA-IR).

Univariate predictors of moderate–severe liver fibrosis in
NAFLD are presented in Table 4 and Fig. 3b. rs12979860 CC

Table 1 | Univariate and multivariate analysis of factors associated with fibrosis stage Z2 in 3,129 patients with CHC.

Variables Fibrosis o2 Fibrosis Z2 Univariate analysis Multivariate analysis

(n¼ 1,584) (n¼ 1,545) P-value OR (95% CI) P-value

Age at time of biopsy (years) 42 (18–62) 47 (18–69) o0.0001* 1.03 (1.02–1.05) o0.0001
Male (%) 944 (47.7) 1036 (52.3) o0.0001w 1.35 (1.19–1.59) o0.0001

Alcohol intake (%)
None or o50 g daily (%) 1373 (51.2) 1310 (48.8) 0.1w — —
Z50 g daily (%) 211 (47.3) 235 (52.7)

HCV genotype
HCV-3 (%) 231 (46.3) 268 (53.7) 0.03w 1.21 (1.01–1.48) 0.03
Non-HCV-3 (%) 1353 (51.4) 1277 (48.6)

BMI (kg m� 2) 25.3 (16–46) 26 (16–46) o0.0001* 1.002 (0.999–1.004) 0.1
ALT (IU l� 1) 60 (12–596) 86 (12–916) o0.0001z 1.003 (0.941–1.32) 0.2
AST (IU l� 1) 45 (11–678) 64 (11–678) o0.0001z 1.19 (1.11–1.45) 0.001
ALP (IU l� 1) 81 (10–902) 90 (14–1018) 0.001z 1 (0.996–1.004) 0.9
Bilirubin (mg dl� 1) 0.63 (0.1–4.71) 0.68 (0.1–4.72) o0.0001z 1.34 (0.85–2.1) 0.2
GGT (IU l� 1) 41 (7–581) 61 (7–851) o0.0001z 1.14 (1.003–1.23) 0.01
Platelet (� 109 l� 1) 224 (54–577) 187 (43–674) o0.0001z 0.993 (0.990–0.996) 0.0001
HCV-RNA log10 (IU l� 1) 5.92 (2.4–7.95) 5.9 (2.51–7.84) 0.8z — —

rs12979860
CC (%) 485 (43) 642 (57) o0.0001w 1.63 (1.24–2.51) o0.0001
CT/TT (%) 1099 (54.9) 903 (45.1)

Inflammation score
None/mild (%) 1138 (65.5) 637 (34.5) o0.0001w 3.43 (3.13–4.22) o0.0001
Moderate severe (%) 446 (31.5) 908 (68.5)

Steatosis degree
None/mild (%) 1295 (50.5) 1266 (49.5) 0.8w — —
Moderate severe (%) 289 (50.9) 279 (49.1)

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CHC, chronic hepatitis C; CI, confidence interval; GGT, g-glutamyl transpeptidase;
OR, odds ratio.
Data are median and range or as %. Liver biopsy data are according to Metavir score. The OR was expressed as the risk of significant fibrosis per unit score change of the variables and per 10 IU l� 1

increase in ALT, AST and ALP.
*Student’s t-test.
wFisher’s exact test.
zMann–Whitney U-test.
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Table 2 | Stratification and interaction analyses for the association of rs12979860 genotype.

rs12979860(Fibrosis Z2/fibrosis o2) Multiplicative interaction

CC (n¼ 1127) CT/TT (n¼ 2002) OR (95% CI) P-value* P-value

Age at time of biopsy (years)
o40 230/228 207/508 2.47 (1.93–3.16) 0.01 0.02
Z40 433/236 675/612 1.66 (1.37–2.01)

Sex
Male 416/322 620/622 1.29 (1.07–1.55) 0.0002 0.01
Female 226/163 283/477 2.33 (1.82–2.99)

HCV genotype
HCV-3 166/92 102/139 2.45 (1.71–3.52) 0.009 0.1
HCV-non 3 476/393 801/960 1.45 (1.23–1.7)

ALT
o40 (IU l� 1) 126/152 234/416 1.47 (1.1–1.96) 0.6 0.6
Z40 (IU l� 1) 516/333 669/683 1.58 (1.32–188)

ALTw

o71 (IU l� 1) 245/256 426/736 1.65 (1.33–2.04) 0.1 0.3
Z71 (IU l� 1) 397/229 477/363 1.32 (1.06–1.63)

Alcohol intake
None or o50 g daily 620/335 690/1038 2.78 (2.36–3.28) 0.3 0.9
Z50 g daily 112/60 123/151 2.29 (1.54–3.39)

ALT, alanine aminotransferase; CI, confidence interval; OR, odds ratio.
Stratification and interaction analyses for the association of rs12979860 genotype, other clinical risk variables and liver fibrosis stage in the cohort of patients with chronic hepatitis C (n¼ 3,129).
Data are as proportion by each category.
*P-value for differences between the OR for rs12979860 genotype within two strata of each clinical variable compared with each other. The OR are the result of univariate analysis. The interaction
between the rs12979860 genotype and other clinical risk variables is quantified by the multiplicative measures of interaction.
wThis stratification is based on median of ALT in the overall cohort.

Number
of cases OR (95% CI) P-value

HR (95% CI) P-value
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Figure 2 | Interaction of rs12979860 with age and gender. (a) Multiple logistic regression analysis of rs12979860 genotype on the OR of having

moderate/severe (ZF2) fibrosis stratified according to age and gender in the cohort of patients with chronic hepatitis C (n¼ 3,129). Bars indicate 95% CIs.

(b) Multivariate Cox regression analysis of rs12979860 genotype on the hazards of having moderate/severe (ZF2) fibrosis stratified according to age and

gender in 1,312 patients with an estimated duration of HCV infection. Bars indicate 95% CIs.
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was associated with both portal and lobular inflammation (OR:
3.5, 95% CI: 1.81–6.61 and OR: 2.65, 95% CI: 1.5–4.68; Po0.0001
for both). By logistic regression, apart from rs12979860 CC, older
age, high insulin, high blood glucose, high HOMA-IR, low
platelet counts, AST, GGT, ALT, the presence of hypertension,
the presence of diabetes and portal inflammation were associated
with significant fibrosis. In a model excluding hepatic inflamma-
tion owing to its strong association with rs12979860 genotype,
rs12979860 CC was associated with significant fibrosis (OR: 1.66,
95% CI: 1.15–2.43; P¼ 0.006; Table 4).

Taken together, rs12979860 genotypes associate with liver
injury (hepatic inflammation) and fibrosis, independent of the
known risk factors.

Discussion
The association between rs12979860 and liver fibrosis has been
controversial. Herein we provide strong evidence in large cohorts

and using multiple complementary approaches that rs12979860
genotype is associated with hepatic inflammation and fibrosis,
irrespective of disease aetiology. We have confirmed previous
data that host and viral factors modulate fibrosis risk, and now
provide additional evidence for an independent role for the
rs12979860 polymorphism in modulating the phenotype. Of
particular interest, we can demonstrate that the genetic effects on
fibrosis are maximal in young females, a group traditionally
considered to have a low risk of CHC disease progression.

Using a comprehensive validation strategy (large patient
cohort, a subset with estimated duration of infection and multiple
analytical approaches) in both cross-sectional and longitudinal
studies, rs12979860 genotype was unequivocally associated with
inflammation and fibrosis stage, and with faster FPRs and fibrosis
progression in paired biopsies. Consistent with the notion from
other cohorts with dual liver biopsies23,24 that inflammation is a
dominant driver of fibrosis, patients with the responder genotypes
also had elevated aminotransferases and more inflammation on
liver biopsy28. The discovery of rs12979860 genotypes as a
predictor of HCV clearance represented a milestone for decision-
making with regard to IFN-based treatment. The present data
now suggest that rs12979860 genotyping is also highly
informative in staging fibrosis and in predicting the rate of liver
fibrosis progression.

Several studies have examined the association between
rs12979860 and rs8099917 genotypes and liver histology with
conflicting results12–21. In most reports12–14,21, the rs12979860
genotype appears to be associated with hepatic inflammation (as
we have confirmed), while effects on fibrosis have been harder to
demonstrate. Some studies in fact have shown no association at
all or an association of the minor rs12979860 genotype TT (or
rs8099917 GG) with more advanced fibrosis or cirrhosis13–18.
Only two studies have demonstrated an association mainly for
non-genotype 1 (refs 12,19) with the rs8099917 responder
genotype. A recent publication added controversy by

Table 3 | Univariate and Multivariate Analysis of Factors Associated with fibrosis stage 42 in 555 patients with chronic
hepatitis B.

Variables Fibrosis r2 Fibrosis 42 Univariate analysis Multivariate analysis
(n¼418) (n¼ 137) P-value OR (95% CI), P-value

Age at time of biopsy (years) 41.6±11.54 45.8±12.1 0.0001* 1.13 (1.09–2.31), 0.01
Male (%) 281 (67.2) 107 (78.1) 0.01w —

HbeAg
HbeAg positive (%) 259 (62) 81 (59.1) 0.6w —
HbeAg negative (%) 159 (38) 56 (40.9)

BMI (kg m� 2) 22.99±3.4 24.4±4.4 0.0001* —
ALT (IU l� 1) 93.3±44.3 102±31.5 0.03z —
AST (IU l� 1) 56±30.97 68.4±36.4 0.0001z 1.03 (1.003–1.064), 0.03
Alkaline phosphatase (IU l� 1) 78.7±25.5 86.3±32.2 0.007z —
GGT (IU l� 1) 40.5±32.2 70.5±59.5 0.0001z 1.014 (1.006–1.023) 0.001
Bilirubin (mmol l� 1) 13.4±7.6 15.4±8.96 0.01z —
Albumin (g l� 1) 44.4±4.06 42.96±4.8 0.002z —
Platelet (� 109 l� 1) 219.7±57.2 179.5±55.8 0.0001z 0.989 (0.982–0.993), 0.001

rs12979860
CC (%) 309 (73.9) 120 (87.6) 0.001w 2.75 (1.23–6.14), 0.001
CT/TT (%) 109 (26.1) 17 (12.4)

HBV DNA (Log10, IU l� 1) 5.96±2.2 6.6±2.04 0.003z 1.68 (1.02–2.36), 0.001

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CHC, chronic hepatitis C; CI, confidence interval; GGT, g-glutamyl transpeptidase;
OR, odds ratio.
Data are as mean±s.d. or as %. Liver biopsy data are according to Metavir score. The OR was expressed as the risk of significant fibrosis per unit score change of the variables and per 10 IU l� 1 increase
in ALT, AST and ALP.
*Student’s t-test
wFisher’s exact test.
zMann–Whitney U-test.

P=0.001 P=0.009100

80

60

40

S
ev

er
e 

he
pa

tic
 

fib
ro

si
s 

(%
)

M
od

er
at

e/
se

ve
re

he
pa

tic
 fi

br
os

is
 (

%
)

20

CC
n= 429

CT
n=114

TT
n=12

0

80

60

40

20

0

rs12979860

CC
n= 245

CT
n=196

TT
n=47

rs12979860

Figure 3 | IFNL genotype and fibrosis in other non-CHC diseases.

rs12979860 genotype and liver fibrosis in patients with (a) CHB (n¼ 555)

and (b) NAFLD (n¼488). Pearson’s w2-test and Fisher’s exact test were

used to compare hepatic fibrosis rates.
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demonstrating that although CHC patients with rs12979860 CC
had greater necroinflammation and worse clinical outcomes, they
had lower mean Ishak fibrosis scores, compared with those with
rs12979860 CT/TT genotypes, and no difference in fibrosis
progression in paired biopsies13.

We suggest that the principal reason for the discrepant results
is the limitation of statistical power in the earlier reports. In
contrast to the present study that included 43,100 patients with
CHC, prior reports usually had o400 patients15–17. To date, the
two largest reported cohorts with histology had 1,019 and 1,483
patients12,13. In these, differences in patient characteristics might
have additionally accounted for the variance in the results. For
example, to demonstrate an effect on liver fibrosis progression,
the study by Noureddin et al.13 included individuals who had
received a prior course of therapy. This might have influenced
their results as a recent report based on paired biopsy analysis
suggests that treatment failure might accelerate fibrosis
progression in CHC29. Inclusion of those with treatment failure
can also lead to selection bias, as patients with rs12979860 CC
with milder stages of fibrosis may have preferentially responded
to therapy, thereby enriching the cohort with rs12979860 non-CC
subjects with more severe liver fibrosis. In the present study, all
analyses only included patients that had not received prior
therapy.

We demonstrated significant interactions of rs12979860
genotype with age and gender on the stage of liver fibrosis. Of
interest, the influence of the rs12979860 responder genotype on
fibrosis was greater in women than men. This was not due to
differences in the frequencies of rs12979860 genotypes, the
duration of infection or the distribution of viral genotypes or viral
load. This result is to be expected given that rs12979860 genotype,
as a hazard variation, would exert its effect most profoundly in
individuals less likely to develop fibrosis (that is, women). In
other words, women who eventually develop fibrosis are more
likely to be genetically predisposed to it. Along the same vein, we
have shown that the influence of the rs12979860 responder
genotype on fibrosis is greater in younger than in older

women. We also demonstrated that the rs12979860 genotype
demonstrates synergy with the classic risk factors (older age and
male gender) in increasing fibrosis. At the individual patient level,
it suggests that early anti-viral treatment should be considered for
those at highest genetic risk of rapid fibrosis, that is, those with
rs12979860 responder genotypes. These findings also have
implications for drug trials of anti-fibrotic therapies, requiring
proper stratification to avoid type 2 errors, or restricting
enrolment only to those at highest risk, to demonstrate an effect.

We have confirmed that HCV genotype 3 is associated with
more advanced fibrosis than non-genotype 3 (ref. 30). A recent
study also indicated an approximately twofold increase in all-
cause mortality and Hepatocellular carcinoma (HCC) in patients
with genotype 3 as compared with non-genotype 3 (ref. 31).
Interestingly, we observed that the effect of rs12979860 responder
status on fibrosis stage was more profound in genotype 3. In
addition, those with rs12979860 CC were more likely to be
infected with genotype 3 than with non-genotype 3, as previously
suggested32. The latter is consistent with our observation that
HCV genotype 1 is associated with greater spontaneous clearance
compared with non-genotype 1 (ref. 33). This leads us to
speculate that rs12979860 genotype might play a causal role in
linking reduced spontaneous clearance, accelerated fibrosis
progression and increased overall mortality and HCC in
genotype 3 CHC.

We observed that the effect of rs12979860 responder genotypes
was more important in early (F0 to F1 and F1 to 2) rather than
late (F2 to F3 and F3 to F4) fibrosis transitions. This suggests
additional complexity in genetic effects. There is experimental
evidence for this. Natural killer (NK) cells promote a proin-
flammatory milieu in the early stages of fatty liver disease34, and
IFNL and HLA-C genotypes likewise interact to influence natural
killer activity, in particular during early infection35. However, the
validity of our observation requires verification in independent
cohorts.

We have demonstrated that rs12979860 genotype influences
necroinflammation and fibrosis in both CHB and in NAFLD.

Table 4 | Univariate and multivariate analysis of factors associated with fibrosis stage Z2 in 488 patients with NAFLD.

Variables Fibrosiso2 FibrosisZ2 Univariate analysis Multivariate analysis
(n¼308) (n¼ 180) P-value OR (95% CI), P-value

Age at time of biopsy (years) 47.5±11.7 51.4±12.9 0.001* 1.15 (1.09–1.4) 0.01
Male (%) 153 (49.7) 99 (55) 0.2w —
Diabetics (%) 68 (22.1) 74 (41.11) o0.0001w —
Hypertensive (%) 103 (33.44) 87 (48.33) 0.001w 1.56 (1.27–2.6) 0.001
BMI (kg m� 2) 32.23±6.4 33.5±8.47 0.09* —
ALT (IU l� 1) 61.8±38.02 86.6±65.9 0.002z 1.001 (0.992–1.01) 0.7
AST (IU l� 1) 41.7±22.9 60.4±39.3 o0.0001z 1.5 (1.06–1.84) 0.0001
GGT (IU l� 1) 69.5±57.6 116.5±90.9 o0.0001z 1.1 (0.98–1.3) 0.2
Platelet (� 109 l� 1) 251.4±62.6 221.4±84.9 o0.0001z 0.995 (0.991–0.998) 0.004
Triglycerides (mmol l� 1) 2.03±1.3 1.94±1.08 0.4z —
LDL-C (mmol l� 1) 3.02±0.99 2.98±1.03 0.6z —
HDL-C (mmol l� 1) 1.26±0.81 1.16±0.33 0.1z —
Blood glucose (mmol l� 1) 5.9±2.5 6.7±2.5 0.001z —
Insulin (mU l� 1) 14.9±10.8 20.9±15.7 o0.0001z —
HOMA-IR 3.8±3.4 6.1±4.9 o0.0001z 1.3 (1.03–1.66) 0.001

rs12979860
CC (%) 140 (45.5) 105 (58.3) 0.007w 1.66 (1.15–2.43) 0.006
CT/TT (%) 168 (54.5) 75 (41.7)

HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment-estimated insulin resistance; LDL-C, low-density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease.
Data are as mean±s.d. or as %. Owing to collinearity, only HOMA-IR was included in the model but not blood glucose and insulin and diabetes status. In another model excluding HOMA-IR, blood
glucose and insulin levels, the adjusted OR for the presence of diabetes was (OR: 2.36, 95% CI: 1.65–3.77; P¼0.0001). rs12979860 remained independently associated with Fibrosis Z2 in this model
(OR: 1.63, 95% CI: 1.14–2.45; P¼0.006). The OR was expressed as the risk of significant fibrosis per unit score change of the variables and per 10 IU l� 1 increase in ALT, AST and GGT.
*Student’s t-test.
wFisher’s exact test.
zMann–Whitney U-test.
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This observation is novel and emphasizes the fact that common
susceptibility genes may play a role in fibrosis evolution,
independent of disease aetiology. To the best of our knowledge,
ours is the first report showing that rs12979860 polymorphisms
have an association with liver histology in CHB. Only two studies
to our knowledge have addressed the role of rs12979860
polymorphisms in NAFLD, both contradictory20,21. The cohort
sizes in these reports ((n¼ 160, showing an association with
inflammation and fibrosis21, and n¼ 196, showing no effect on
histology20) probably accounts for the divergent results. Our
larger cohorts therefore help to clarify the role of rs12979860 in
liver fibrosis in these conditions, in particular the context of our
consistent overall story.

It could be questioned as to why several apparently relevant
genome-wide association study (GWAS) of HCV- and HBV-
related HCC36,37, which occur in the context of cirrhosis,
or others on HCV treatment outcomes in which liver histology
was available7–9 have failed to identify associations between
IFN-l region genetic variants and liver fibrosis. However, this
may be methodological as highlighted by recent criticisms of the
utility of GWAS that focus on susceptibility to inform on other
aspects of a disease38. For example, a recent paper in Cell,
leveraging from a GWAS on susceptibility, identified a non-
coding polymorphism in FOXO3A not identified by the GWAS
(rs12212067: T4G) that associated with the course of, but not
susceptibility to, Crohn’s disease and rheumatoid arthritis, and
with an increased risk of severe malaria39. Hence, GWAS design
(for example, of susceptibility versus progression) is critical to
outcome.

Recently, several functional variants have been discovered in
the IFN-l region, including IFNL4. Production of the IFNL4
protein is dependent on the DG/TT (rs368234815) frameshift
polymorphism11,40 and predicts HCV clearance better than the
rs12979860 SNP. A second polymorphism in the 30-untranslated
region region of IFNL3 (rs4803217) affects the messenger RNA
stability of IFNL3 (ref. 41). We also identified a third
polymorphism, rs4803221, which predicts Sustained virologic
response (SVR) better than rs12979860 (ref. 42). Although the
role of these variants in predicting liver fibrosis is unknown,
especially in non-HCV cohorts, they are in strong linkage
disequilibrium (LD) with rs12979860 and, therefore, we speculate
will provide similar results.

Although the mechanisms for the fibrogenic effect of
rs12979860 genotypes are beyond the scope of the current work,
some hypotheses can be entertained. For example, Sheahan
et al.43 recently demonstrated that in human hepatocytes (HCV
infected and non-infected), cell death- and survival-related
networks were the top upregulated pathway in responder
rs12979860 genotype patients. In that study, donors with
responder genotypes were able to generate more effective
anti-viral immune responses compared with those with the
non-responder genotype. Along the same vein, Raglowet et al.44

demonstrated higher basal interferon-stimulated genes (ISGs) in
non-infected livers of rs12979860 responder patients. Thus, it is
possible that IFNL genotype, by activation of immune, cell death
and survival responses, could on the one hand render hepatocytes
more efficient at responding to infection, but on the other, drive
hepatic inflammation and liver fibrosis.

In conclusion, we provide strong evidence that the IFNL
genotype modulates hepatic inflammation and fibrosis. This effect
is independent of disease aetiology and in the case of hepatitis
C is independent of, but synergistic with, age and gender.
Understanding the biological basis for these observations will be
the next important step, but in the meantime our data provide an
evidence base for the development of individualized patient
management algorithms.

Methods
Patient cohort. The study comprises 4,172 patients, including 3,129 with CHC,
555 with CHB and 488 with NAFLD. For CHC, 3,129 Caucasian patients were
from the International Hepatitis C Genetics Consortium database of chronically
infected HCV patients. The International Hepatitis C Genetics Consortium
included patients from 16 tertiary and academic centres from 5 countries
(Australia, United Kingdom, Spain, Italy and Germany). All consecutive patients at
these centres, who had a liver biopsy with scoring for fibrosis stage and disease
activity before treatment between 1999 and 2011, were included. Patients were
excluded if they had evidence of other liver diseases by standard tests. Additional
fibrosis progression analyses were conducted in a subset of 1,312 patients from the
initial cohort with an estimated duration of infection, which enabled calculation of
the FPR per year. A further 106 patients with paired liver biopsies were evaluated;
none in this cohort had cirrhosis at the initial biopsy and had the subsequent
biopsy a minimum of 1 year and a maximum of 10 years later. The second biopsy
was undertaken at the discretion of the treating clinician as part of routine clinical
care and no patient had received IFN-based therapy either before the initial biopsy
or between the first and second biopsies. Ethics approvals were obtained from the
following Human Research Ethics Committees: the Sydney West Area Health
Service, the University of Sydney, Human Research Ethics Committee; South
Eastern Sydney Local Health District, NSW Health; Ethics Committee of St
Vincent’s Hospital, Sydney; Nepean Blue Mountains Local Health District Human
Research Ethics Committee, Sydney; The Royal Perth Hospital Human Research
Ethics Committee, WA; Metro South Human Research Ethics Committee,
QLD; Human Research Ethics Committee, South Metropolitan Health Service,
Fremantle, WA; Sir Charles Gairdner Hospital Human Research Ethics Committee,
WA; Ethics Committee of Valme University Hospital, Seville; Ethics Committee of
Medical Research of the University of Leipzig, Berlin; Ethics Committee of Medical
Research the University of Berlin (Charité), Berlin; Northern & Yorkshire MREC,
Nottingham; Ethical Committee of the Città della Salute e della Scienza University
Hospital, Torino; Ethical Committee IRCCS ‘Casa Sollievo della Sofferenza’
Hospital San Giovanni Rotondo, Italy; Joint Chinese University of Hong Kong–
New Territories East Cluster Clinical Research Ethics Committee, Hong Kong;
Northumberland Research Ethics Committee, Newcastle; and the Ethics
Committee of the Medical Faculty, Rheinische Friedrich-Wilhelms University
Bonn, Bonn. All patients provided written informed consent.

Clinical and laboratory assessment. The following data were collected at the
time of liver biopsy from all patients: sex, age, ethnicity, recruitment centre, alcohol
intake, BMI and routine laboratory tests. Alcohol consumption was assessed by two
separate interviews with the patient and close family members. BMI was calculated
as mass divided by the square of the height (kg m� 2). Data on cardio-metabolic
status were collected from the NAFLD cohort. The diagnosis of arterial hyper-
tension and diabetes was according to international criteria45. ALT, AST,
g-glutamyl transferase, prothrombin time, bilirubin, haemoglobin, leukocyte and
platelet count were determined by routine laboratory techniques. After an
overnight fast, venous blood was drawn to determine serum levels of triglyceride,
high-density lipoprotein cholesterol, insulin and C-peptide. Serum insulin and
C-peptide were determined by routine laboratory techniques. IR was determined
by the HOMA method using the following equation: HOMA-IR¼ fasting insulin
(mU ml� 1)� fasting plasma glucose (mmol l� 1)/22.5.

Methods to estimate the duration of infection. Fibrosis progression was examined
in 1,312 CHC patients with a reliable estimated duration of infection. For patients
with a history of blood transfusion (n¼ 371), the onset of infection was assumed to
be the year of transfusion. For subjects with a history of injecting drug use (n¼ 749),
the time of infection was estimated using the reported ‘first year of injection’. For
patients with a history of occupational exposure (n¼ 192), the onset of infection was
assumed to be the first year of a needle stick exposure. The duration of infection was
calculated by subtracting the estimated age at infection from age at biopsy.

Liver histopathology. Biopsies were interpreted by a single expert liver pathologist
in each centre, who was blinded to patient clinical characteristics, serum
measurements and IFNL genotyping. The interobserver agreement between
pathologists was studied previously and was good for METAVIR staging using k
statistics (k¼ 77.5)10. All biopsies had a minimum length of 15 mm or the presence
of at least 11 complete portal tracts; inadequate biopsies were excluded46. Liver
histopathology for cases with CHC or CHB was according to METAVIR47. Fibrosis
was staged from F0 (no fibrosis) to F4 (cirrhosis). Necroinflammation (A) was
graded as A0 (absent), A1 (mild), A2 (moderate), or A3 (severe). For NAFLD, the
Kleiner classification was used to compute the NAFLD activity score (from 0 to 8,
on a scale including separate scores for steatosis, lobular inflammation and
hepatocellular ballooning) and to stage fibrosis from 0 to 4 (ref. 48).

Genotyping. Genotyping for rs12979860 and rs8099917 SNPs was undertaken
using the TaqMan SNP genotyping allelic discrimination method (Applied
Biosystems, Foster City, CA, USA). The rs8099917 genotyping kit was supplied by
Applied Biosystems and rs12979860 genotyping was performed using a custom-
designed genotyping assay from Applied Biosystems. Genotyping was performed
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using the StepOne RT system and analysed with StepOne software v.2.3.0 (Applied
Biosystems). All genotyping was undertaken blinded to clinical variables.

Statistical analysis. Statistical analyses were performed using the statistical
software package SPSS for Windows, version 21 (SPSS, Chicago, IL), SAS version
9.1 and SAS Enterprise 9.4, unless otherwise indicated. Results are expressed as
mean±s.d. or number (percentage) of patients. Student’s t-tests or non-parametric
tests (Mann–Whitney U-test) were used to compare quantifiable data, as appro-
priate. The w2- and Fisher’s exact tests were used for comparison of frequency
data and to evaluate the relationships between groups. All tests were two-tailed and
P-values o0.05 were considered significant.

Multiple logistic regression models were used to assess for factors independently
associated with liver injury. For this analysis, necroinflammation was dichotomized
as absent/mild (Metavir score A0–A1) or moderate/severe (Metavir score A2–A3)
and fibrosis as absent or mild (Metavir score F0–1), or significant (Metavir score
F2–4). For the NAFLD cohort, factors independently associated was portal
inflammation dichotomized as absent–mild (portal inflammation 0–1) or
moderate–severe (portal inflammation 2–3), and fibrosis dichotomized as absent/
mild (F0–F1) or significant (F2–F4) was determined. The OR estimates the relative
change in the rate of the outcome (significant fibrosis) per unit increase in the
explanatory variable. Apart from rs12979860, the other covariates included known
liver fibrosis risk factors such as age, sex, route of infection, serum HCV RNA level,
HCV genotype, BMI, diabetes, the grade of METAVIR activity, alcohol
consumption, liver enzymes, platelets count and recruitment centre as well.
Variables with Po0.20 in univariate analyses with the outcome of interest were
included in multivariate analyses.

We examined five potential genetic models that might explain the effect of
rs12979860 on liver fibrosis: co-dominant, dominant, recessive, over dominant and
log additive using SNPStats (http://bioinfo.iconcologia.net/index.php)49,50. The
Log Additive model compares major allele homozygotes versus heterozygotes
versus minor allele homozygotes, presuming an r-fold risk for heterozygote
subjects and a 2r-fold risk for homozygous subjects with the major allele. We
investigated which model was the most appropriate by calculating the AIC
values51. The lowest AIC is indicative of the best fit. The strength of the association
between rs12979860 and significant fibrosis under each model was expressed by
ORs and their corresponding 95% CIs.

The FPR in the 1,312 Caucasians patients with CHC and an estimated duration
of infection was determined by calculating the ratio between the fibrosis stage and
the estimated disease duration (in years). Three approaches were used to assess
fibrosis progression. Patients were stratified into two groups of stage-constant FPRs
according to the median rate (that is, 0.076 fibrosis units per year), which was used
as a cutoff. Factors associated with rapid FPR (that is, higher than the median) were
analysed by univariate and multivariate regression analysis. Two additional
approaches were used to assess fibrosis progression and to confirm the results of
the multivariate regression. First, an estimation of the stage-specific progression
rate using a Markov maximum likelihood estimation method, as suggested by Yi
et al.52, was applied to estimate the annual stage-specific transition probabilities
(for example, F0 to F1, F1 to F2 and so on). Second, we used Cox regression
analysis to model the time taken for significant fibrosis to occur. For this, after
checking the normality of the quantified variables, appropriate logarithmic
transformations were made. We considered estimated age at infection as the
starting point and the first liver biopsy showing significant fibrosis (failure time) or
the last liver biopsy showing an absence of significant fibrosis in the absence of
treatment (censored time) as the end point. A Cox proportional-hazards regression
model was fitted, and the covariates were considered significant if Po0.05.
Multivariate adjusted analyses were used with sex, HCV genotype, age at infection,
alcohol consumption, ALT and centre as covariates.

For the identification of interactions between rs12979860 genotype and known
risk factors for fibrosis progression, namely age, sex, alcohol consumption, ALT
(a surrogate marker of necro-inflammation) and HCV genotype, we used multiple
approaches to confirm the consistency of the results. These included stratified
analyses to assess whether the rs12979860 genotype OR across two levels of each of
these clinical factors differed significantly: multiplicative interactions models and
genotype-clinical factor joint effects34,35.

For continuous variables, the cohort was divided into two groups for the
comparisons: age at time of biopsy (o40 and Z40 years), ALT (o40 and
Z40 IU l� 1), ALT (o71 and Z71 IU l� 1; the median of ALT in the cohort) and
alcohol intake (none or o50 g daily and Z50 g daily). For the categorical variables,
the cohort was categorized as: sex (male or female) and (HCV genotype 3 or HCV
non-genotype 3). Likelihood ratio tests were used to test for significance of OR
differences between the clinical variable categories and a P-value below 0.05
(likelihood ratio test) was used to indicate a significant interaction.

Multiplicative interaction was evaluated by fitting a multiple logistic regression
model with the main effects of risk factor and genotype, plus the interaction term.
This was done for each of the known risk factors.
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