21 research outputs found

    Study on Thermal Properties and Mechanical Properties of Short-cut Polyimide-Fiber Reinforced Polyphenyl Sulfone Composites

    Get PDF
    In order to increase the thermal stability and mechanical property of PPSU, two different polyimide (PI) short cut fibers reinforced polyphenyl sulfone (PPSU) composites were prepared by melt extrusion using a threescrew extruder. In addition, the effects of fiber lengths on thermal stability, heat resistance and mechanical properties of the composites was studied. The results indicate that the addition of polyimide chopped fiber can greatly improve the heat resistance of the composites. Comparing with PPSU, with the increasing of fiber content, the heat deformation temperature (HDT) of composites increased from 205 °C to 229 °C, but the addition of polyimide fiber has limited effect on the thermal stability of the composites. Meanwhile, the addition of polyimide chopped fiber can also improve the mechanical properties of the composites. Compared with PPSU, the tensile strength of composites can be increased by 102%, and the bending strength can be raised by 117%

    Volatile Constituents, Inorganic Elements and Primary Screening of Bioactivity of Black Coral Cigarette Holders

    Get PDF
    Black corals (BC) have been used for a long time in Chinese medicine, and may have some pharmaceutical functions when used as material for cigarette holders in southeast China. This study is aimed to investigate the bioactivities of volatile constituents in BC and to explore the folklore behind the use of BC cigarette holders (BCCHs). We extracted the volatile constituents of BC by supercritical fluid extraction (SFE) with carbon dioxide (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 15 components were reliably identified in BC and found to be biologically active. These included triethyl phosphate, butylated hydroxytoluene, cedrol, n-hexadecanoic acid, squalene, and cholesterol. Meanwhile 13 inorganic elements (P, Ca, Mg, S, B, Si, Fe, Cu, Zn, Ba, etc.) were determined by inductively coupled plasma spectrometer (ICPS). In the bioactivity tests, the BC extract (BCE) showed a scavenging activity of 2,2-diphenyl-1-picrylhydrazyl free radicals and hydroxyl radicals by phenanthroline-Fe (II) oxidation and moderate inhibition of Gram-positive microorganisms. The antioxidant and antimicrobial activities of BC, which are related to the active chemical composition, may explain the perceived benefit for cigarette smokers who use BCCHs

    CFD Simulation of Dry Pressure Drop in a Cross-Flow Rotating Packed Bed

    No full text
    The cross-flow rotating packed bed (RPB) has attracted wide attention in recent years because of its advantages of large gas capacity, low pressure drop and lack of flooding limitation. However, the complex structure of the packing makes it difficult to obtain the gas flow characteristics in the cross-flow RPB by experiments. In this study, the dry pressure drop in the cross-flow RPB was investigated by computational fluid dynamics (CFD). The packing was modeled by the porous media model and the rotation of the packing was simulated by the sliding mesh model. The simulation results obtained by three turbulence models were compared with experimental results, and the RNG k-ε model was found to best describe the turbulence behaviors in the cross-flow RPB. Then, the effects of gas flow rate and rotating speed on dry pressure drop in different parts of the cross-flow RPB were analyzed. The results of this study can provide important insights into the design and scale-up of cross-flow RPB

    Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer

    No full text
    The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen’s pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy
    corecore