44 research outputs found

    Global 2-D intercomparison of sectional and modal aerosol modules

    No full text
    International audienceWe present an intercomparison of several aerosol modules, sectional and modal, in a global 2-D model in order to differentiate their behavior for tropospheric and stratospheric applications. We model only binary sulfuric acid-water aerosols in this study. Three versions of the sectional model and three versions of the modal model are used to test the sensitivity of background aerosol mass and size distribution to the number of bins or modes and to the prescribed width of the largest mode. We find modest sensitivity to the number of bins (40 vs. 150) used in the sectional model. Aerosol mass is found to be reduced in a modal model if care is not taken in selecting the width of the largest lognormal mode, reflecting differences in sedimentation in the middle stratosphere. The size distributions calculated by the sectional model can be better matched by a modal model with four modes rather than three modes in most but not all situations. A simulation of aerosol decay following the 1991 eruption of Mt. Pinatubo shows that the representation of the size distribution can have a signficant impact on model-calculated aerosol decay rates in the stratosphere. Between 1991 and 1995, aerosol extinction and surface area density calculated by two versions of the modal model adequately match results from the sectional model. Calculated effective radius for the same time period shows more intermodel variability, with a 20-bin sectional model performing much better than any of the modal models

    Coupling Processes Between Atmospheric Chemistry and Climate

    Get PDF
    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry

    Continued development and validation of the AER two-dimensional interactive model

    Get PDF
    Results from two-dimensional chemistry-transport models have been used to predict the future behavior of ozone in the stratosphere. Since the transport circulation, temperature, and aerosol surface area are fixed in these models, they cannot account for the effects of changes in these quantities, which could be modified because of ozone redistribution and/or other changes in the troposphere associated with climate changes. Interactive two-dimensional models, which calculate the transport circulation and temperature along with concentrations of the chemical species, could provide answers to complement the results from three-dimension model calculations. In this project, we performed the following tasks in pursuit of the respective goals: (1) We continued to refine the 2-D chemistry-transport model; (2) We developed a microphysics model to calculate the aerosol loading and its size distribution; (3) The treatment of physics in the AER 2-D interactive model were refined in the following areas--the heating rate in the troposphere, and wave-forcing from propagation of planetary waves

    Spectroscopic Detection of COClF in the Tropical and Mid-Latitude Lower Stratosphere

    Get PDF
    We report retrievals of COClF (carbonyl chlorofluoride) based on atmospheric chemistry experiment (ACE) solar occultation spectra recorded at tropical and mid-latitudes during 2004-2005. The COClF molecule is a temporary reservoir of both chlorine and fluorine and has not been measured previously by remote sensing. A maximum COClF mixing ratio of 99.7+/-48.0 pptv (10(exp -12) per unit volume, 1 sigma) is measured at 28km for tropical and subtropical occultations (latitudes below 20deg in both hemispheres) with lower mixing ratios at both higher and lower altitudes. Northern hemisphere mid-latitude mixing ratios (30-50degN) resulted in an average profile with a peak mixing ratio of 51.7+/-32.1 pptv, 1 sigma, at 27 km, also decreasing above and below that altitude. We compare the measured average profiles with the one reported set of in situ lower stratospheric mid-latitude measurements from 1986 and 1987, a previous two-dimensional (2-D) model calculation for 1987 and 1993, and a 2-D-model prediction for 2004. The measured average tropical profile is in close agreement with the model prediction; the northern mid-latitude profile is also consistent, although the peak in the measured profile occurs at a higher altitude (2.5-4.5km offset) than in the model prediction. Seasonal average 2-D-model predictions of the COClF stratospheric distribution for 2004 are also reported

    A tropical West Pacific OH minimum and implications for stratospheric composition

    Get PDF
    Most of the short-lived biogenic and anthropogenic chemical species that are emitted into the atmosphere break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of a pronounced minimum in the tropospheric column of ozone over the West Pacific, the main source region for stratospheric air, and suggest a corresponding minimum of the tropospheric column of OH. This has the potential to amplify the impact of surface emissions on the stratospheric composition compared to the impact when assuming globally uniform OH conditions. Specifically, the role of emissions of biogenic halogenated species for the stratospheric halogen budget and the role of increasing emissions of SO<sub>2</sub> in Southeast Asia or from minor volcanic eruptions for the increasing stratospheric aerosol loading need to be reassessed in light of these findings. This is also important since climate change will further modify OH abundances and emissions of halogenated species. Our study is based on ozone sonde measurements carried out during the TransBrom cruise with the RV <i>Sonne</i> roughly along 140–150° E in October 2009 and corroborating ozone and OH measurements from satellites, aircraft campaigns and FTIR instruments. Model calculations with the GEOS-Chem Chemistry and Transport Model (CTM) and the ATLAS CTM are used to simulate the tropospheric OH distribution over the West Pacific and the transport pathways to the stratosphere. The potential effect of the OH minimum on species transported into the stratosphere is shown via modeling the transport and chemistry of CH<sub>2</sub>Br<sub>2</sub> and SO<sub>2</sub>

    Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    Get PDF
    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed

    Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    Get PDF
    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively

    Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements

    Get PDF
    We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCI, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approximately 17-47 km) altitude range and over 10 degree latitude bins from 70 deg S to 70 deg N. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and CIONO2; (2) from the N2O-NOy correlation, (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approximately 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed

    A comparison of observations and model simulations of NO_x/NO_y in the lower stratosphere

    Get PDF
    Extensive airborne measurements of the reactive nitrogen reservoir (NO_(y)) and its component nitric oxide (NO) have been made in the lower stratosphere. Box model simulations that are constrained by observations of radical and long-lived species and which include heterogeneous chemistry systematically underpredict the NO_x (= NO + NO_2) to NO_y ratio. The model agreement is substantially improved if newly measured rate coefficients for the OH + NO_2 and OH + HNO_3 reactions are used. When included in 2-D models, the new rate coefficients significantly increase the calculated ozone loss due to NO_x and modestly change the calculated ozone abundances in the lower stratosphere. Ozone changes associated with the emissions of a fleet of supersonic aircraft are also altered

    A comparison of observations and model simulations of NO\u3csub\u3ex\u3c/sub\u3e/NO\u3csub\u3ey\u3c/sub\u3e in the lower stratosphere

    Get PDF
    Extensive airborne measurements of the reactive nitrogen reservoir (NOy) and its component nitric oxide (NO) have been made in the lower stratosphere. Box model simulations that are constrained by observations of radical and long-lived species and which include heterogeneous chemistry systematically underpredict the NOx (= NO + NO2) to NOy ratio. The model agreement is substantially improved if newly measured rate coefficients for the OH + NO2 and OH + HNO3 reactions are used. When included in 2-D models, the new rate coefficients significantly increase the calculated ozone loss due to NOx and modestly change the calculated ozone abundances in the lower stratosphere. Ozone changes associated with the emissions of a fleet of supersonic aircraft are also altered. Copyright 1999 by the American Geophysical Union
    corecore