130 research outputs found

    Fractional-Order Partial Cancellation of Integer-Order Poles and Zeros

    Get PDF
    The key idea of this contribution is the partial compensation of non-minimum phase zeros or unstable poles. Therefore the integer-order zero/pole is split into a product of fractional-order pseudo zeros/poles. The amplitude and phase response of these fractional-order terms is derived to include these compensators into the loop-shaping design. Such compensators can be generalized to conjugate complex zeros/poles, and also implicit fractional-order terms can be applied. In the case of the non-minimum phase zero, its compensation leads to a higher phase margin and a steeper open-loop amplitude response around the crossover frequency resulting in a reduced undershooting in the step-response, as illustrated in the numerical example.publishedVersio

    Detection of Immune Checkpoint Receptors – A Current Challenge in Clinical Flow Cytometry

    Get PDF
    Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels

    Genome annotation improvements from cross-phyla proteogenomics and time-of-day differences in malaria mosquito proteins using untargeted quantitative proteomics

    Get PDF
    The malaria mosquito, Anopheles stephensi, and other mosquitoes modulate their biology to match the time-of-day. In the present work, we used a non-hypothesis driven approach (untargeted proteomics) to identify proteins in mosquito tissue, and then quantified the relative abundance of the identified proteins from An. stephensi bodies. Using these quantified protein levels, we then analyzed the data for proteins that were only detectable at certain times-of-the day, highlighting the need to consider time-of-day in experimental design. Further, we extended our time-of-day analysis to look for proteins which cycle in a rhythmic 24-hour ("circadian") manner, identifying 31 rhythmic proteins. Finally, to maximize the utility of our data, we performed a proteogenomic analysis to improve the genome annotation of An. stephensi. We compare peptides that were detected using mass spectrometry but are 'missing' from the An. stephensi predicted proteome, to reference proteomes from 38 other primarily human disease vector species. We found 239 such peptide matches and reveal that genome annotation can be improved using proteogenomic analysis from taxonomically diverse reference proteomes. Examination of 'missing' peptides revealed reading frame errors, errors in gene-calling, overlapping gene models, and suspected gaps in the genome assembly

    Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe.

    Get PDF
    Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs
    corecore