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Abstract

The malaria mosquito, Anopheles stephensi, and other mosquitoes modulate their biology to

match the time-of-day. In the present work, we used a non-hypothesis driven approach (untar-

geted proteomics) to identify proteins in mosquito tissue, and then quantified the relative

abundance of the identified proteins from An. stephensi bodies. Using these quantified protein

levels, we then analyzed the data for proteins that were only detectable at certain times-of-the

day, highlighting the need to consider time-of-day in experimental design. Further, we

extended our time-of-day analysis to look for proteins which cycle in a rhythmic 24-hour (“cir-

cadian”) manner, identifying 31 rhythmic proteins. Finally, to maximize the utility of our data,

we performed a proteogenomic analysis to improve the genome annotation of An. stephensi.

We compare peptides that were detected using mass spectrometry but are ‘missing’ from the

An. stephensi predicted proteome, to reference proteomes from 38 other primarily human dis-

ease vector species. We found 239 such peptide matches and reveal that genome annotation

can be improved using proteogenomic analysis from taxonomically diverse reference prote-

omes. Examination of ‘missing’ peptides revealed reading frame errors, errors in gene-calling,

overlapping gene models, and suspected gaps in the genome assembly.

Introduction

Anopheles stephensi is a major malaria vector in southern Asia where its geographic range

extends across the Indian subcontinent [1]. Research on the African Anopheles gambiae mos-

quito has demonstrated that the behavior and physiology of the mosquito is highly dependent

on circadian biology and time-of-day. For example, ~20% of An. gambiae genes were
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rhythmically expressed over the 24-hour day [2]; rhythmically expressed mosquito olfaction

genes correspond with rhythmic proteins levels and time-of-day changes in electrophysiologi-

cal sensitivity to host odorants [3]; and time-of-day effects are associated with mosquito insec-

ticidal resistance[4]. An. stephensi has been demonstrated to have 24-hour nocturnal rhythms

of flight behavior that persists even in the absence of light:dark cues [5]. Finally, rhythms in

the biology of the mosquito, and indeed possibly in the human host and plasmodium parasite,

may interact to affect disease transmission [6–8].

To date, the genomes of two strains of An. stephensi have been sequenced, one from

India and one from Pakistan (SDA-500) [9, 10]. To our knowledge, proteomics in this spe-

cies is limited to an Edman degradation of their salivary glands [11]; mass spectrometry

proteomics analysis of salivary proteomes [11, 12]; fat bodies [13, 14]; midguts/fat bodies

[14]; a mass spectrometry proteomics analysis of ageing in the head and thorax [15]; and a

recent work across multiple tissues which included genome annotation improvements

[16].

In An. gambiae, several mass spectrometry-based studies have been performed on various

tissues, including the antennae, head, body, midgut peritrophic matrix, salivary glands, and

cuticle [3, 17–20]. Proteomic experiments can be used to identify post-translational modifica-

tion, improve genome annotation, and to identify and quantify proteins in a biological sample

[16, 21, 22].

A previous study in An. gambiae mosquito antennae utilized targeted quantitative proteo-

mics, in which the mass spectrometer was tuned to specifically identify and quantify the pro-

tein abundance of proteins from an a priori list of genes of interest [3] where only targeted

proteins are interrogated. Targeted proteomics is a powerful technique, allowing the verifica-

tion of a defined working hypothesis on specific proteins that are quantified.

In the present work, we used a non-hypothesis driven approach (untargeted proteomics) to

identify proteins in mosquito tissue. In addition, we quantified the relative abundance of the

identified proteins from An. stephensi bodies. Such an untargeted, label free, quantitative anal-

ysis has been used on diverse tissues such as mammalian cells, yeast, bacteria, and Ostreococcus
tauri algae [23–26]. Using these quantified protein levels, we then analyzed the data for pro-

teins that were only detectable at certain times-of-the day, highlighting the need to consider

time-of-day in experimental design. Further, we extended our time-of-day analysis to look for

genes that are not only detectable at certain times-of-day, but which cycle in a rhythmic

24-hour (“circadian”) manner.

Annotation of the An. stephensi genome is far less complete than that of the model mos-

quito, An. gambiae. Proteogenomic analysis can be used to improve these annotations, par-

ticularly by experimentally validating computationally-derived open reading frame (ORF)

predictions [27]. Additionally, proteogenomic analysis can be used in the identification of

variant sequences and novel splicing sites [28, 29]. In these analyses, peptides detected using

mass spectrometry were compared with reference proteomes. Peptide sequences not found

in predicted protein coding regions indicate mis-annotations such as missing exons or

entire missing genes, while peptide sequences with single amino-acid differences between

the experimentally detected sequence and reference proteome may represent sequencing

errors or polymorphisms. Here we apply proteogenomic analysis to An. stephensi, but

employing a novel protocol, we reference over 30 predicted proteomes from other vector

species to search against our experimentally derived peptides. We reveal that genome anno-

tation can be improved using proteogenomic analysis from taxonomically diverse reference

proteomes.

Time-of-day mosquito untargeted quantitative proteomics
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Results and discussion

Global survey of the proteome without fractionation

Using an untargeted proteomics approach without any fractionation on pooled samples of 10

whole mosquitoes harvested across the 24hr day, we have identified 12641 unique peptides

(having a Maxquant score of 45 and more) mapping to ~1700 (identified with at least 2 pep-

tides) An. stephensi proteins (S1 Table). An. stephensi is thought to have ~11,789 genes [9]

thus, with no fractionation we observed 13% of the predicted proteome. Future studies could

increase the number of detectable proteins by fractionation or by using an iTRAQ or TMT

labelling strategy combined with fractionation as a good compromise between high number of

samples and fractionation.

Time-of-day dependent changes in detectable genes

In order to determine if there is a time-of-day dependent ability to detect proteins, mosquito

bodies were collected every four hours from three staggered time courses (Fig 1) of between

28–44 hr (Fig 1). Note in this collection protocol, each of five times-of-day are sampled, inde-

pendently, five times (see Fig 1). Untargeted, quantitative proteomics was performed (S2

Table, S3 Table), and a total of 1525 body proteins were deemed quantifiable (identified with a

least two component peptides) from the body samples.

Our data revealed differences in the total number of proteins that were quantifiable at any

given time-of-day (583–733 proteins per time-of-day) (Fig 2A). When the identity of proteins

detectable (i.e. quantity > 0) is considered, there are a number of proteins only detectable at

certain times-of-day. Whereas 489 proteins were detectable at all sampling times, there were

between 45 and 72 proteins that were only detectable at 2–5 times-of-day, and 134 were only

detectable at a single time-of-day (Fig 2B). Not surprisingly, proteins that had a higher average

abundance were generally detectable at more times-of-day (Fig 2C).

Identification of rhythmic genes

We extended our analysis further by looking for genes that were rhythmically expressed using

an algorithm (JTK_CYCLE) specifically designed for looking for “circadian” expression pat-

terns. First, we analyzed the subset of 357 proteins that were detected at all time points, and

where>1 peptide was used to identify each protein in each sample at each timepoint. Of these

0          4          8          12          16          20     
24       28        32        36         40           0
4          8          12        16         20          24
28       32         36        40          0            4
8         12         16        20         24         28

Time course 1

Time course 2

Time course 3

ZT0             ZT4             ZT8           ZT12          ZT16           ZT20     
Zeitgeber time

Fig 1. Sampling protocol for time-of-day assays. Three separate time courses were performed to achieve five

biological replicates per time-of-day. Black numbers indicate the elapsed hours of the time course. Individual

collections (points) and mean (red line) values are provided. The horizontal white/black bar provides represents the

light/dark (i.e. day/night) conditions that the mosquitoes were collected under.

https://doi.org/10.1371/journal.pone.0220225.g001
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proteins, ANOVA revealed 90 proteins, where at least one time point was significantly differ-

ent from the others (p< 0.1). Next, from the list of proteins with statistically significant time-

of-day differences in protein concentration (90 proteins), we proceeded to analyze those pro-

teins for 24 hr daily rhythms in abundance (rather than only a simple time-of-day difference)

using the JTK_CYCLE algorithm. This algorithm is used to mine ‘omic data for such 24 hour

rhythms [30, 31], and we thus applied it to our data. JTK_CYCLE identified 31 proteins as hav-

ing rhythmic expression (Fig 3). As An. stephensi has not been extensively annotated, we

mapped these 31 proteins to their homologues in Ae. aegypti, An. gambiae, Culex quinquefas-
ciatus, and/or D. melanogaster to assign a name/function to each protein (Table 1). We note

these rhythmic proteins display a wide range of phases (times-of-day when proteins peak) and

abundance amplitudes (Fig 3, Table 1).

Conservation of rhythmicity across species. We next searched published studies of

rhythmic gene expression in Ae. aegypti [32], An. gambiae [2], and D. melanogaster [33] to

determine if homologues of rhythmic An. stephensi protein were rhythmic in these species at

the gene expression level. Indeed, we determined that of our 31 rhythmically identified An. ste-
phensi proteins, 17 had homologues in at least one of the other three species with rhythmic

expression of the same gene (Table 1). This represents ~55% of identified An. stephensi rhyth-

mic proteins. For example, considering An. stephensi protein ASTEI01494, which is predicted

to be glycerol 3-phosphate based on homology to D. melanogaster (FBgn0001128) and An.

gambiae (AGAP007593), we find the An. stephensi protein abundance is rhythmic, as are the

gene expression levels in An. gambiae gene expression and D. melanogaster expression levels.

Similarly, protein abundance levels of ASTEI00584 and expression levels of the homologous

hydrogenase genes in Ae. aegypti (AAEL010814)/An. gambiae (AGAP003167) are also both

rhythmic (see Table 1).

Proteogenomic analysis. In order to determine if our proteomics work could be used to

improve the An. stephensi genome, we next performed a proteogenomic analysis. Two sets of
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https://doi.org/10.1371/journal.pone.0220225.g002
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computed proteomes from VectorBase were utilized: (1) the An. stephensi proteome (Indian

strain peptide sequences, AsteI2.3 geneset with 11,789 entries); and (2) the complete prote-

omes stored in VectorBase (here referred to as “All Vectors”, with >566,000 entries). “All vec-

tors” comprises 39 proteomes (S4 Table), including other mosquito proteomes and other
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https://doi.org/10.1371/journal.pone.0220225.g003
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Table 1. Rhythmic proteins identified.

Indian-strain geneID SDA-500

geneID

JTK_CYCLE values Dipteran homologues ��

ADJ.P Phase (ZT) ��� Ensembl ID Species: Name

ASTEI00121 ASTE003060 0.013 18 CPIJ013361 CQUI: Tropomyosin-1

ASTEI00584 ASTE004515

ASTE008899

0.018 20 AAEL010814� AAEG: isocitrate dehydrogenase

AGAP003167� AGAM: NAD(P) transhydrogenase

ASTEI00675 ASTE008899 0.015 8 n/a

ASTEI00949 ASTE002146

ASTE011453

0.090 16 AGAP003937� AGAM: AGAP003937

AGAP003936� AGAM: small nuclear ribonucleoprotein D2

ASTEI01125 ASTE005445 0.030 20 CPIJ011528 CQUI: NADH dehydrogenase iron-sulfur protein 2, mitochondrial

ASTEI01494 ASTE001799

ASTE001800

ASTE001801

0.012 22 FBgn0019968 DMEL: Kinesin-73

FBgn0001128� DMEL: GPD-C

AGAP007593� AGAM: glycerol-3-phosphate dehydrogenase (NAD+)

ASTEI01887 ASTE007267 0.020 8 AAEL003211� AAEG: beta-carotene dioxygenase

AGAP008143� AGAM: AGAP008143

ASTEI02163 ASTE010238 0.063 20 AGAP005558 AGAM: peptidase (mitochondrial processing) beta

ASTEI02221 ASTE009536 0.026 20 AGAP005627� AGAM: creatine kinase

AGAP012924� AGAM: Arginine kinase

ASTEI02598 ASTE008307 0.056 18 AGAP006936� AGAM: Mitochondrial cytochrome c1 heme protein

ASTEI02810 ASTE010498 0.071 18 CPIJ000098 CQUI: Electron transfer flavoprotein-ubiquinone oxidoreductase

ASTEI03561 ASTE000276 0.001 10 FBgn0263594 DMEL: RH35990p

ASTEI03834 ASTE011384 0.056 4 AAEL007698� AAEG: PIWI

ASTEI03928 ASTE003184 0.001 14 AGAP010051� AGAM: AGAP010051

ASTEI04436 ASTE006286 0.090 18 AGAP000720� AGAM: Neuronal cell adhesion molecule

ASTEI05481 ASTE011491 0.044 16 CPIJ019398 CQUI: Myosin light chain 2

ASTEI05637 ASTE010982 0.009 18 AGAP011131� AGAM: F-type H+-transporting ATPase subunit d

ASTEI06078 ASTE002102 0.050 22 AGAP012100 AGAM: 40S ribosomal protein S26

ASTEI06447 ASTE009294 0.003 2 AAEL003427 AAEG: 40S ribosomal protein S16

ASTEI06644 ASTE008693 0.008 8 AGAP008364� AGAM: thioester-containing protein 15

ASTEI06854 ASTE001249 0.034 10 FBgn0031021 DMEL: NADH dehydrogenase (ubiquinone) 18 kDa subunit

ASTEI07075 ASTE002586 0.026 12 AGAP004055� AGAM: 2-oxoglutarate dehydrogenase E2 component

ASTEI07469 ASTE001425 0.071 18 AAEL014913 AAEG: Pyruvate kinase

ASTEI075885 ASTE010928 0.071 10 AGAP004146� AGAM: Ras-related protein Rab-1A

ASTEI08990 ASTE000090 0.007 10 AGAP010895� AGAM: spectrin beta

ASTEI09101 ASTE006195 0.003 18 AGAP007841� AGAM: F-type H+-transporting ATPase subunit delta

ASTEI09205 ASTE008202 0.023 18 AGAP011800 AGAM: Transaldolase

ASTEI09484 ASTE004410 0.034 18 AGAP010404� AGAM: Glutathione S-transferase

AAEL011741� AAEG: AAEL011741

ASTEI09679 ASTE002472

ASTE002473

0.020 10 AAEL007881� AAEG: AAEL007881

ASTEI10862 ASTE001429 0.004 10 FBgn0016693 DMEL: Putative Achaete Scute Target 1

ASTEI11367 No match 0.012 16 AGAP007122 AGAM: Tubulin, alpha 1

� The listed homologue has been found to be expressed rhythmically in Aedes aegypti [32], Anopheles gambiae [2], or Drosophila melanogaster [33]

�� Only rhythmic homologues and/or a representative named homologue in AAEG: Ae. aegypti, AGAM: An. gambiae, CQUI: Culex quinquefasciatus, or DMEL: D.

melanogaster is provided.

��� The calculated time-of-day, in zeitgeber (ZT) time, when protein abundance peaks where ZT0 is lights on and ZT12 is lights off.

https://doi.org/10.1371/journal.pone.0220225.t001
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vectors such as snails, ticks, and kissing bugs. In other words, we analyzed the spectra gener-

ated from each peptide and compared it against both a list of An. stephensi computed peptide

spectra and our “All Vectors” computed peptide spectra. A spectrum that was found in “All

Vectors” but not An. stephensi was deemed to be missing from the An. stephensi genome, since

we had proteomic evidence of the existence of the peptide as computed from other species (of

varying degrees of relatedness).

There were 57,726 peptide matches between our data and the An. stephensi (Indian strain)

proteome in VectorBase. Using a score cut-off based on identity score (average of 35.6 for “All

Vectors” and 19 for An. stephensi) the number of retained high confident peptides matches

decreased to 82,402 and 32,949 for “All Vectors” and An. stephensi, respectively. We manually

validated all hits which were found in both sets and removed any peptides that had identical or

nearly identical scores in both “All Vectors” and An. stephensi (e.g. isoleucine to leucine per-

mutations are isobaric and are thus not easily distinguishable by mass spectrometry).

From the preceding analyses and filtering (such as excluding matches to SDA-500, another

An. stephensi strain) we identified a total of 792 (S5 Table) high-confidence matches between

peptide sequences that are ‘missing’ from the An. stephensi (Indian strain) proteome, yet are

found in the 39 “All Vectors” (S4 Table) proteomes. Some identified ‘missing’ peptides had

only a match in another single organism, while other peptides could be found in up to 35 other

proteomes. By also combining peptide sequences that are completely contained within longer

peptide sequences that were also detected, we are left with 239 unique peptide groups (i.e.
ATAQLIESIK, ATAQLIE, and ATAQL count as one peptide group) that were detected using

proteomics in An. stephensi samples, that matched at least one peptide sequence in one of the

39 other proteomes, but are not found in the currently available predicted Indian strain An.

stephensi proteome. Matches were found across a wide phylogenic diversity, from lice to

snails–not just in other mosquitos or diptera (Supplemental 5, Fig 4). These matches suggest

possible genome annotation errors, which we next analyzed.

Identification of potential errors in the genome annotations. Further analysis of the

peptides detected in our study, but missing from the An. stephensi proteome (Indian strain,

Astel2.3), revealed potential errors in the genome annotations and/or assembly (S6 Table). Of

the 239 peptides missing from the An. stephensi, but with matches found in “All Vectors,”

were 2 peptides with 100% identity to a transcript based on tBLASTn analysis. These were

found to be in a different reading frame than the annotated transcript and represent missing

gene models where two genes overlap—a common phenomenon in eukaryotic organisms

[34]. tBLASTn analysis revealed 25 peptides with 100% identity to a genome scaffold but not

to a transcript. These are most likely genes that were not called by the gene prediction software

and are missing from the current geneset (Astel2.3). There were 94 peptides that had high

homology to a genomic region that contained a SNP or a mismatch causing a frameshift muta-

tion, which could be either mutations or sequencing errors. Finally, 120 peptides were not

found in the genome using standard BLAST tools and may represent gaps in the genome

assembly.

Conclusions

In this work we performed untargeted quantitative proteomics on An. stephensi mosquito

samples to answer three different questions: (1) Are there qualitative, time-of-day differences

in the peptides? (2) What proteins can be detected as rhythmic in a 24 hour “circadian” man-

ner? and (3) Can the An. stephensi genome be improved using proteomic data compared

against genomes of other species?

Time-of-day mosquito untargeted quantitative proteomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0220225 July 29, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0220225


By collecting mosquito samples every four hours across the day, we determined that there

are time-of-day differences in the number and quantity of proteins that are detectable at any

given time-of-day. Previous work in An. gambiae revealed dusk (ZT12) was the time-of-day

that had the greatest number of rhythmic genes which had their peak in expression [2]. It was

hypothesized that this is due to the massive change in mosquito behavior and physiology as it

goes from a resting state during the day to an active, host seeking mosquito at night [2]. Con-

gruent with this, the greatest number of detectable proteins were detected at dusk in An. ste-
phensi. Not surprisingly, proteins that had a higher protein abundance were detectable at more

times-of-the day. A total of 134 proteins were detected only at one time-of-day, and 489 were

detectable at all times-of-day.

We next extended our analysis from a question of detectability at different times-of-day, to

see if 24-hour (“circadian”) levels of protein abundance could be detected in our dataset. Previ-

ous work in the An. gambiae mosquito utilized targeted quantitative proteomics, whereby the

protein abundance of proteins from an a priori list of genes of interest [3, 17] was quantified.

Here we attempted to use a non-hypothesis driven, untargeted proteomic approach to quantify

proteins in mosquito tissue. Work in other species has previously revealed ~20% of An. gam-
biae genes and at least 8% Ae. aegytpi genes are rhythmically expressed over the 24-hour day

[2].
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Here, in An. stephensi, we were able to detect rhythmic protein abundance levels in only 31

of the 1525 quantifiable proteins (2%). This is much lower than we expected from gene expres-

sion data from other mosquito species, but likely represents an underestimation of the true

number of rhythmic proteins. One explanation for undetected rhythmic protein abundance is

that low-concentration protein time courses were removed prior to analysis. These peptides

may have represented protein abundance levels that were rhythmic, but dropped below the

detection limits in our experimental runs at certain times-of-day. To our knowledge, this is the

first untargeted quantitative proteomics performed in a mosquito species, and we reveal it can

be used to reliably quantify a large number of proteins. We note, however, that some proteins

may be rhythmic, or only appear at certain times-of-day, and this point should be considered

when doing experimental design.

When we considered the homology of proteins here found to have rhythmic abundance lev-

els, ~55% of identified An. stephensi rhythmic proteins have homologues in other species that

have been determined, at the gene expression level, to be also rhythmic. This provides further

evidence of the rhythmic nature of biological processes being conserved across species [35].

Finally, the present study revealed a number of potential errors in the current An. stephensi
genome annotations and/or assembly. Untargeted proteomics could be leveraged to improve

current genome annotations; however, proteomic reducibility, speed, and whole-proteome

coverage are limited using our current technologies.

Materials and methods

Biological material

A lab colony of An. stephensi mosquitoes were maintained at ~60% relative humidity and 26˚C

on a 12 hr/12 hr LD cycle [11 hr full light, 11 hr darkness (0 lux) and 1 hr dawn and 1 hr dusk

transitions]. Access to 8% (w/v) fructose was provided ad libitum. In three replicate time

courses (with slightly different durations depending on available number of mosquitoes per

batch, see Fig 1), mosquitoes were placed in individual containers (pots) and allowed to accli-

mate for several days. A pot of mosquitoes was euthanized on dry ice every four hours and

placed in -80˚C prior to tissue preparation. Heads were separated on dry ice from bodies (legs

and wings were removed). Herein “body” describes the body of the mosquito with no head,

wings, or legs.

Sample preparation for the time series analysis

A pool of 10 bodies was used per sample, solubilized in 250ul 8M urea 1% SDS and homoge-

nized using a Precellys cell homogenizer (Bertin Instruments). The homogenization step com-

prises three steps of 40s at 5000rpm with a 10s pause; the overall procedure was repeated twice.

A protein assay was performed using Pierce BCA protein assay kit, and a 50μg protein equiva-

lent was used for SDS-PAGE analysis. Samples were briefly run on SDS-PAGE gel for 10 min,

extracted and digested using Shevchenko’s method [36]. Peptide extracts were then cleaned on

SPE reverse phase Bond Elut LMS (Agilent). The samples were dried under low pressure

(Speedvac from Thermo-Fisher) and stored at -20˚C.

HPLC-MS analysis

The dried peptide samples were re-suspended in resuspension buffer (0.05%v/v trifluoroacetic

acid in water) to a final concentration of 1 μg/μl. These samples were filtered using a Millex fil-

ter before subjecting to HPLC-MS analysis. Nano-HPLC-MS/MS analysis was performed

using an on-line system consisting of a nano-pump (Dionex Ultimate 3000, Thermo-Fisher,
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UK) coupled to a QExactive instrument (Thermo-Fisher, UK) with a pre-column of 300 μm x

5 mm (Acclaim Pepmap, 5 μm particle size) connected to a column of 75 μm x 50 cm (Acclaim

Pepmap, 3 μm particle size). Samples were analyzed on a 90 min gradient in data dependent

analysis (1 survey scan at 70k resolution followed by the top 10 MS/MS).

Proteomics, protein identification and quantification

Data from MS/MS spectra were searched using MASCOT Versions 2.4 (Matrix Science Ltd,

UK) against An. stephensi (Indian strain AsteI2.3) data stored in VectorBase [37, 38]. Search

parameters included a maximum missed-cut value set to 2. The following features were used

in all searches: i) variable methionine oxidation, ii) fixed cysteine carbamidomethylation, iii)

precursor mass tolerance of 10 ppm, iv) MS/MS tolerance of 0.05 amu, v) significance thresh-

old (p) below 0.05 (MudPIT scoring) and vi) final Mascot peptide score of 20. A complete

dataset was analysed using MaxQuant v1.5.2.8 [39] assuming a Maxquant score of 45 and

more.

For the time series quantification analysis Progenesis (version 4, Nonlinear Dynamics) was

used for LC-MS label-free quantitation (S2 Table). Progenesis QI for proteomics software has

been designed specifically to perform label-free quantitation and is capable of analyzing signif-

icant numbers of large data files due to its peak-modelling algorithm which reduces the data

files by an order of magnitude without losing any information. This allows for the analysis of

large data sets including large numbers of replicates that would otherwise be impractical to

run. The software is enabled with a graphical user interface which allows MS data to be viewed

in either two or three dimensions. This can help to verify if features have been quantified accu-

rately. In brief, the basic software steps are as follows: (1) Alignment of runs to compensate for

LC separation “between-run” variation, allowing like-for-like comparison of peptide signals;

(2) Feature detection and quantitation using peak area method; (3) Peptide identification

using the mascot search engine; and (4) Peptide/protein quantitation using the calculated

abundance of the features to which identifications have been matched.

Only MS/MS peaks with a charge of 2+, 3+ or 4+ were considered for the total number of

‘Features’ (signal at one particular retention time and m/z) and only the five most intense spec-

tra per ‘Feature’ were included. Normalization was first performed based on the median of the

ion intensities of these sets of multi-charged ions (2+, 3+, and 4+). The associated unique pep-

tide ion intensities for a specific protein were then summed to generate an abundance value,

which was transformed using an ArcSinH function (a log transform is not ideal considering

the significant amount of near zero measurements generated by the current method of detec-

tion). Based on the abundance values, within group means were calculated and from there the

fold changes (in comparison to control) were evaluated. One-way ANOVA was used to calcu-

late the p-value based on the transformed values. A larger dataset with samples from both

heads and bodies were analyzed using Maxquant to generate a list of identified protein and

peptides (S3 Table). False Discovery Rate (FDR) information is provided in Table 2.

Table 2. False Discovery Rate (FDR) information.

An. stephensi Decoy FDR

Peptide matches above identity threshold 11867 160 1.35%

Peptide matches above homology or identity threshold 13300 248 1.86%

https://doi.org/10.1371/journal.pone.0220225.t002
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Homologue identification

To generate the gene names and orthologues in Table 1, the list of strain Indian (ASTEI) target

proteins detected in the time course proteomics analysis translations was matched to strain

SDA-500 (ASTE) homologues. Using this translation table, Indian strain proteins were

matched to dipteran orthologous genes in OrthoDB [40, 41]. (ftp://cegg.unige.ch/OrthoDB8/

Eukaryotes/Genes_to_Ogs/ODB8_EukOGs_genes_ALL_levels.txt.gz). Filtering was per-

formed in a Jupyter notebook [42] using the Pandas (v0.18.1) Python library [43]. The note-

book (https://figshare.com/s/dbb89cb869f416979f60) is accessible on FigShare. Some gene

names were manually supplemented using VectorBase [37, 38] or FlyBase [44].

Statistical analysis for rhythmic genes

In order to detect rhythmic protein abundance, we first only considered proteins where

ANOVA revealed at least one time point is significantly different from the others (p< 0.1).

Abundance data for those proteins was then processed with JTK_CYCLE [30] using the Meta-

Cycle R package [31] to identify rhythmic proteins with a 24 hr period. Proteins were called

rhythmic when their quantified protein abundance was determined by rhythmic by

JTK_CYCLE (p< 0.1). We report at p = 0.09, q = 0.20 as our false discovery rate.

Proteogenomic analysis

A proteogenomic analysis was performed using the Mascot (Matrix science) package. Two sets

of computed proteomes from VectorBase [37, 38] were utilized: (1) the An. stephensi proteome

(Indian strain peptide sequences, AsteI2.3 geneset with 11,789 entries); and (2) the entirety of

arthropod proteomes stored in VectorBase (“All Vectors”, with>566,000 entries). This com-

prises 39 proteomes (S4 Table), both a second An. stephensi strain (SDA-500), other mosquito

proteomes, snails, and other arthropod vectors such as sandflies, ticks, and kissing bugs.

We generated a subset of MS/MS features by removing MS/MS feature redundancy (keep-

ing a maximum of the 5 most abundant peaks having the same masses and retention time).

The merge .mgf file was generated using Progenesis. The dataset was searched against: (1) the

An. stephensi proteome stored in VectorBase; and (2) against all the proteomes stored in Vec-

torBase. We filter the identified peptide as follow: we only kept in both searches peptides hav-

ing a Mascot score above identity and were ranked as first hit. We compared the two datasets

and removed any specific peptide having the same score in both databases or showing similar

peptide permutations such as isoleucine to leucine, which have indistinguishable mass spec-

trometry readings.

Supporting information

S1 Table. Identified peptides and proteins from untargeted proteomics.

(XLSX)

S2 Table. Progenesis output.

(XLSX)

S3 Table. Results of quantitative proteomics of An. stephensi bodies.

(XLSX)

S4 Table. List of reference species and gene build versions from VectorBase used for pro-

teogenomic analyses.

(DOCX)
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S5 Table. “Missing peptides” not found in An. stephensi, but with matches found in other

species.

(CSV)

S6 Table. BLAST analysis of An. stephensi genome assembly (Astel2-Indian strain) using

the peptide sequences from proteomics analysis revealed missing genome annotations.

Peptide transcript hit (100%), 100% identity to An. stephensi gene transcript with full query

length using tblastn; Scaffold hit (100%), 100% identity to An. stephensi genome scaffold with

full query length using tblastn; Wobbly scaffold hit (<100% hit)<100% identity to An. ste-
phensi genome scaffold with 1 mismatch and with full query length ± 1 with tblastn; No hit, no

hits (not transcript, scaffold, or wobbly scaffold hit) in An. stephensi genome using tblastn,

missing in genome assembly.

(CSV)
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