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Abstract: The key idea of this contribution is the partial compensation of non-minimum phase
zeros or unstable poles. Therefore the integer-order zero/pole is split into a product of fractional-
order pseudo zeros/poles. The amplitude and phase response of these fractional-order terms is
derived to include these compensators into the loop-shaping design. Such compensators can be
generalized to conjugate complex zeros/poles, and also implicit fractional-order terms can be
applied. In the case of the non-minimum phase zero, its compensation leads to a higher phase
margin and a steeper open-loop amplitude response around the crossover frequency resulting in
a reduced undershooting in the step-response, as illustrated in the numerical example.

1. INTRODUCTION

Non-minimum phase zeros and unstable poles limit the
closed-loop performance of control systems. Regarding the
open-loop controller design, these dynamics restrict the
achievable crossover frequency and stability margins. For
these processes, the idea of direct compensation does not
render the control loop internally stable and bounded dis-
turbances destabilize the system. Introducing fractional-
order (FO) terms in the controller, i.e. sα in the Laplace
domain, however, enables one to split the undesired term
and set up an easy to tune partial compensator.

In this paper we reflect on the results published in Merrikh-
Bayat (2013) and extend the observations therein by
extending the proposed method towards conjugate com-
plex zeros/poles. Furthermore, we include the implicit FO
zero/pole for partial cancellation of the undesired integer-
order (IO) non-minimum phase zeros or unstable poles,
i.e. the individual parts of the FO lead-lag-element, usually
utilized to achieve the iso-damping property (Tavazoei and
Tavakoli-Kakhki, 2014; Raynaud and Zergäınoh, 2000).
The FO compensators are straightforward to tune and
can be implemented using IO approximations. Comparable
results can be achieved with advanced IO design methods
leading to a similar controller order, see e.g. (Voß et al.,
2022).

This contribution is divided into four sections. The fol-
lowing section gives a short introduction to FO transfer
functions and introduces the analytical amplitude- and
phase responses of FO pseudo zeros/poles and its implicit
counterparts. In Section 3 we split an IO zero/pole into
the corresponding FO pseudo zeros/poles and partially
compensate the stable part, leading to changes in the cor-
responding sensitivities. Finally, in Section 5, the proposed
method is evaluated using an academic example, showing
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its benefit in comparison to stable-mirror compensation
with an IO zero/pole. Section 6 concludes the paper.

2. PRELIMINARY RESULTS AND DEFINITIONS

2.1 Fractional-Order Control

The generalization of integer-order calculus towards non-
integer orders can be done in various ways. A common
operator applied in control theory is the non-local Caputo
operator (Monje et al., 2010)

t0Dα
t f(t) =

1

Γ(m− α)

∫ t

t0

f (m)(t)

(t− τ)α−m+1
dτ (1)

where α ∈ R+ is the order of differentiation, m is an
integer such that m − 1 ≤ α < m and Γ(·) represents
Euler’s gamma function. The operator’s Laplace transform
is given by (Monje et al., 2010)

L{0Dα
t f(t)} = sαL{f(t)} −

m−1∑
k=0

sα−k−1f (k)(0). (2)

Here we shall only consider FO input-output behavior with
zero initial conditions. The transfer function reads

G(s) =
bmsmα + . . .+ b1s

α + b0
ansnα + . . .+ a1sα + 1

=
B(sα)

A(sα)
(3)

with pseudo polynomials A, B of commensurate order α.

Theorem 1. (Stability: FOLTI systems (Matignon, 1996)).
The FO system with transfer function G(s)=B(sα)/A(sα)
and commensurate order α is stable iff any p ∈ C of A with
A(p) = 0 satisfies

| arg(p)| > α
π

2
.

Compared to IO systems, this results in a larger, however
non-convex stability domain for α ∈ (0, 1), see Fig. 1.

2.2 Fractional-Order Pseudo Zeros and Poles

We consider the term given in the Laplace domain
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, z > 0, α ∈ (0, 1] (4)

with k ∈ {−1, 1}, i.e. a non-minimum phase pseudo zero
of non-integer order α for k = 1 or an unstable pseudo
pole for k = −1. The magnitude and phase of Xk

z,α can be
calculated as (Merrikh-Bayat (2013)):
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Note that Merrikh-Bayat (2013) limit this term to z ∈ R,
but a straightforward generalization to z ∈ C is possible.

For clarity, we restrict the discussion in this section to
k = 1, i.e. right-half plane (RHP) pseudo zeros. To derive
analog results for RHP pseudo poles, just let k = −1.

The Bode plot of Xz,α for z = 1 and α ∈ {0.25, 0.5, 1} is
depicted in Fig. 2. Note that Xz,α of (4) coincides with an
IO non-minimum phase zero for α = 1, i.e.

Z1(s) = 1− s

z
, z > 0 (7)

with Z1 = Xz,1, which we introduce to clearly identify
IO zeros. The asymptotic behavior for low and high
frequencies is summarized in Table 1. It shows that for
high frequencies the magnitude slope decreases for small
values of α. This does not apply to the phase lag, which
increases for a decreasing order α. Compared to the IO
case, the phase drop already occurs at lower frequencies.
Furthermore, the amplitude response of Xz,α shows a
minimum at the frequency (Merrikh-Bayat, 2013)
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Fig. 1. Schematic representation of the stability condition.

Given an IO transfer function of a plant containing a non-
minimum phase zero or unstable pole at z > 0
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Z1 can be expanded to α−1 = ν, ν ∈ N pseudo zeros
(Merrikh-Bayat (2013)), leading to
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Note that all ν − 1 pseudo zeros of Qz,ν are located in the
stable region Cα = {z ∈ C | |arg(z)| > απ

2 }, depicted in
Fig. 1, see (Merrikh-Bayat, 2013). Thus, it may be used to
partially cancel the non-minimum phase zero of the plant
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leading to a FO pseudo zero described above for k = 1.
Note, although the phase lag of Xz,ν−1 exceeds Z1 (see
Fig. 2), the partial cancellation results in a greater phase
margin as well as a steeper slope of the magnitude in
comparison with the classical IO pseudo compensation of
the non-minimum phase zero by its mirrored pole
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term Z1 and its pseudo compensation Z1D
−1
1 .

2.3 Implicit Fractional-Order Pseudo Zeros and Poles

An effect similar to the partial cancellation of the non-
minimum phase zero in (10) can be achieved by introduc-
ing the implicit term as a part of the FO lead-lag element
(Monje et al., 2010)
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can be calculated directly from the IO terms.
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z

)k

Q̃−k
z,ν(s), z > 0, α =

1

ν
(13)

and k ∈ {−1, 1}. The magnitude and phase
∣∣∣X̃k

z,α(jω)
∣∣∣=

(
1 +

(ω
z

)2
)k α

2

, (14)

∠X̃k
z,α(jω)=k arctan

(
−ω

z

)
− k(1− α) arctan

(ω
z

)
(15)

can be calculated directly from the IO terms.

Again, we restrict the following discussions to implicit
pseudo zeros, i.e. k = 1. However, the analog results for
implicit pseudo poles are obtained by setting k = −1.

The asymptotic frequency characteristics coincide with the
pseudo zero in (4) and are given in Table 1. Furthermore,
the phase of the two representations in (6) and (15)
coincide at ω = z, i.e.

∠Xk
z,α(jω)

∣∣∣
z
= ∠X̃k

z,α(jω)
∣∣∣
z
= k

π

2

(α
2
− 1

)
. (16)

However, the sample graphs in Fig. 2 show the major
differences between these two formulations. First, the mag-
nitude of the implicit term X̃z,α does not lower around
ω = z. Second, it results in less phase lag for ω < z com-
pared to the explicit formulation in (4). This renders the

implicit term Q̃z,ν more attractive to partially compensate
a non-minimum phase zero of a given plant, especially in
the case of phase limitations.

2.4 Pair of FO Conjugate Complex Pseudo Zeros or Poles

The practical relevance of RHP conjugate complex zeros
might not be as obvious as it is for poles. However, consider
the Padé-approximation of a time delay. It involves a dom-
inant pair of non-minimum phase zeros for approximation
orders higher than one (Padé, 1892). On the other hand,
given a plant with a pair of conjugate complex poles,
undesired effects may occur not only for those in the RHP.
Also low-damped stable poles have a significant impact on
the stability margins. So first we have a look at RHP zeros
and poles, then a pair of stable poles is considered.

Similar to the representations (4) to (6), a pair of conjugate
complex pseudo zeros at

z = ω0e
jφ, z̄ = ω0e

−jφ ∈ C+ (17)

with ω0 = |z|, φ = arg(z) and C+ = {z ∈ C |Re(z) > 0}
may be given as X k

z,α = Xk
z,α Xk

z̄,α and we obtain

X k
z,α(s) = ω−2αk

0

(
s2α − 2 (sω0)

α
cos (φα) + ω2α

0

)k
. (18)

For α = 1, Equation (18) coincides with the IO case, i.e.

Zk
2 (s) = ω−2k

0

(
s2 − 2sω0 cos (φ) + ω2

0

)k
, (19)

which can be pseudo compensated analogous to (11) with

Dk
2 (s) = ω−2k

0

(
s2 + 2sω0 cos (φ) + ω2

0

)k
. (20)

The Bode plot of X−1
z,α for z = 1ej

π
3 and α ∈ {0.25, 0.5, 1}

is given in Fig. 3. In contrast to the case of a single positive
pseudo zero, an increase in the magnitude leading to a
maximum can be observed. Moreover, the phase lifts at
lower frequencies compared to the IO case. The asymptotic
frequency characteristics are summarized in Table 2.

Table 2. Asymptotic freq. char. of FO RHP
conjugate complex pseudo zeros and poles.

Pair of Pseudo Zeros Pair of Pseudo Poles

Frequency ω ≪ ω0 ω ≫ ω0 ω ≪ ω0 ω ≫ ω0
d
dω

| · | in dB
dec

0 40α 0 −40α

∠(·) in ◦ 0 −360 + 180α 0 360− 180α

Given a plant with a pair of RHP conjugate complex zeros
(k = 1) or poles (k = −1), it can be written as

G2(s) = Zk
2 (s)Ĝ2(s). (21)

Fig. 3. Bode plot of X−1
z,α and X̃−1

z,α opposite to the IO

term Z−1
2 and its pseudo compensation Z−1

2 D2.

Equation (19) can be reformulated as

Zk
2 (s) =

(
1− s

z

)k (
1− s

z̄

)k

(22)

which turns out to be useful since expansion (9) also holds
for z ∈ C. Thus, each term in (22) can be expanded to (9),
where Xk

z,ν−1 and Qk
z,ν have a conjugate complex part, i.e.

Qk
z,ν(s) = Qk

z,ν(s) Q
k
z̄,ν(s) (23)

with real coefficients. In order to make use ofQk
z,ν , we show

that all pseudo zeros are located in the stable region Cα

and restrict us to k = 1 (pseudo zeros) without loss of
generality. For this purpose, we consider one term of Qz,ν

in (23) separately and its associated IO zero in (22). Then
the same discussion is made for the other term.

The arguments of the ν-th roots λn = ν
√
z are given by

arg (λn) = φn = (φ+2πn)ν−1, n = 0, 1, . . . , ν− 1 (24)

with the constant angle between two consecutive roots

∆φ = φn − φn−1 = 2πν−1. (25)

From expansion (9) it can be seen that the principal
root λ0 is separated and not part of Qz,ν , leading to the
zeros of Qz,ν with

φn = (φ+ 2πn)ν−1, n = 1, 2 . . . , ν − 1. (26)

Considering the two critical cases that are illustrated in
Fig. 1, i.e. λ1 and λν−1, we need to show that

∆φ > πν−1, (27)

as it covers the worst cases for |φ| < π
2ν , i.e. φ = ±π

2 . It
directly follows from (25) that this holds true and thus all
pseudo zeros of Qz,ν are located in the stable region.

Therefore, without introducing instability, it can be used
to partially cancel the pair of conjugate complex ze-
ros/poles resulting in

Zk
2 (s) Q−k

z,ν(s) = X k
z,α(s) (28)

with a lower-order pair of pseudo zeros/poles.

Analogous to (12) and (13), the implicit counterparts of
Qk

z,ν and X k
z,α can be defined as
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Q̃k
z,ν(s) =

(
1

ω2
0

(
s2 + 2sω0 cos (φ) + ω2

0

))k ν−1
ν

, (29)

X̃ k
z,α(s) = Zk

2 (s) Q̃−k
z,ν(s)

=

(
ω2α
0

s2 − 2sω0 cos(φ) + ω2
0(

s2 + 2sω0 cos(φ) + ω2
0

)1−α

)k

(30)

with z, z̄ of (17) and α = 1
ν . Similar to the single implicit

pseudo zero/pole X̃k
z,α in (13), the magnitude and phase

of X̃ k
z,α can be calculated using the IO terms (omitted

here). Figure 3 holds an exemplary Bode plot of X̃−1
z,α.

Asymptotic frequency characteristics are summarized in
Table 2. Comparing the behavior of the explicit and
implicit pair of pseudo poles, similar conclusions can be
drawn as for a single real non-minimum phase zero.

Interesting observations can be made when considering a
pair of complex poles in C− = {z ∈ C |Re(z) < 0}, i.e.

p = ω0e
jφ, p̄ = ω0e

−jφ ∈ C−, (31)

as the partial cancellation is not necessarily restricted to
RHP poles. For this purpose, we show that all ν = α−1,
ν ∈ N roots of p and p̄ are located in the stable region Cα,
that is

|arg(p)| > π

2
=⇒ pα ∈ Cα, α = ν−1. (32)

Equation (24) for λn = ν
√
p is equivalent to

ν arg (λn)− 2πn = φ, n = 0, 1, . . . , ν − 1. (33)

Considering the absolute values with the restricted range
0 < |arg(λn)| < π results in

ν |arg (λn)| ≥ |φ| ⇐⇒ |arg (λn)| ≥
|φ|
ν

(34)

and for |φ| > π/2 we get

|arg(p)| = |φ| > π

2
=⇒ |arg (λn)| >

π

2ν
= α

π

2
. (35)

Therefore, implication (32) holds.

As all ν-th roots are stable, any pair of conjugate complex
pseudo poles could be canceled partially. However, the
highest effect is expected for the roots closest to the
stability border because pseudo poles with |arg(λ)| < π

ν
lead to an oscillating step response, see (Monje et al.
(2010)). This applies to the principal roots

λ0 = ν
√
ω0 ej

φ
ν and λ̄0 = ν

√
ω0 e−jφν (36)

that can be cancelled using the term

Xp,α(s) =

(
1−

(
s

p

)α)(
1−

(
s

p̄

)α)

= ω−2α
0

(
s2α − 2 (sω0)

α
cos (φα) + ω2α

0

)
(37)

with α = ν−1, which coincides with Xz,α of (18) for z = p.
Thus, given a plant with a stable conjugate complex pole
pair p and p̄, i.e. arg(p) = φ > π

2 , we get

G3(s) =
ω2
0

s2 − 2sω0 cos (φ) + ω2
0

Ĝ3(s) = P (s)Ĝ3(s) (38)

and P (s)Xp,α(s) = Qp,ν(s), (39)

where Qp,ν coincides with Qz,ν in (23) for z = p. A Bode

plot of Qp,ν for p = −1ej
9π
20 and ν ∈ {2, 4} is depicted

in Fig. 4 and clearly shows the effect of the cancellation.
According to (Monje et al. (2010)), a non-oscillating step
response is expected.

Fig. 4. Bode plot of Qp,ν and Q̃p,ν opposite to the IO
term P and its compensation PD3 with D3 = P−1.

The implicit representation corresponding to (39) for
α = ν−1 can be written as

X̃p,α(s) = ω−2α
0

(
s2 − 2sω0 cos (φ) + ω2

0

)α
= P−α(s), (40)

Q̃p,ν(s) = P (s)X̃p,α(s) = P
1−ν
ν (s), (41)

leading to a similar asymptotic frequency behavior, as it
can be seen in the Bode plot of Fig. 4. However, there are
major differences at ω ≈ ω0 for both the magnitude as
well as the phase plot. As expected, explicit cancellation
of the two principal roots completely erases the oscillatory
part of the poles, whereas the implicit compensation only
reduces the amplitude peak and phase drop.

3. APPLICATION TO STANDARD CONTROL-LOOP

For analyzing effects of the partial pole/zero cancellation
on the closed-loop stability, a standard control-loop with
plant G and controller C is investigated.

The complementary, output and input sensitivity func-
tions are given by

T =
GC

1 +GC
, Sy =

1

1 +GC
, Su =

G

1 +GC
, (42)

where the argument ‘s’ is omitted for clarity.

Let G = Zk
i Ĝ and C = Q−k

i Ĉ with i ∈ {1, 2}, k ∈ {−1, 1},
whereXk

i =
∏i

m=1 X
k
z,α andQk

i =
∏i

m=1 Q
k
z,ν . If i = 1, we

consider a real z > 0, whereas z, z̄ ∈ C+ for i = 2, which
is consistent with the definitions in the previous sections.
Furthermore, we stress that all RHP-roots of GC are part
of Zk

i . Now, consider the sensitivities from above and put
the relations for G and C leading to

T =
Zk
i ĜQ−k

i Ĉ

1 + Zk
i ĜQ−k

i Ĉ

Zk
i =Xk

i Q
k
i=

Xk
i ĜĈ

1 +Xk
i ĜĈ

=
ĜĈ

X−k
i + ĜĈ

,

Sy =
1

1 + Zk
i ĜQ−k

i Ĉ
=

1

1 +Xk
i ĜĈ

and

Su =
Zk
i Ĝ

1 + Zk
i ĜQ−k

i Ĉ
=

Xk
i Q

k
i Ĝ

1 +Xk
i ĜĈ

=
Qk

i Ĝ

X−k
i + ĜĈ

.

Knowing that all RHP-roots are part of Zk
i = Xk

i Q
k
i ,

where Qk
i only has stable roots, it directly follows: The

control loop is internally stable if all roots of the FO
pseudo polynomial X−k

i + ĜĈ are located in Cα. This
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Q̃k
z,ν(s) =

(
1

ω2
0

(
s2 + 2sω0 cos (φ) + ω2

0

))k ν−1
ν

, (29)

X̃ k
z,α(s) = Zk

2 (s) Q̃−k
z,ν(s)

=

(
ω2α
0

s2 − 2sω0 cos(φ) + ω2
0(

s2 + 2sω0 cos(φ) + ω2
0

)1−α

)k

(30)

with z, z̄ of (17) and α = 1
ν . Similar to the single implicit

pseudo zero/pole X̃k
z,α in (13), the magnitude and phase

of X̃ k
z,α can be calculated using the IO terms (omitted

here). Figure 3 holds an exemplary Bode plot of X̃−1
z,α.

Asymptotic frequency characteristics are summarized in
Table 2. Comparing the behavior of the explicit and
implicit pair of pseudo poles, similar conclusions can be
drawn as for a single real non-minimum phase zero.

Interesting observations can be made when considering a
pair of complex poles in C− = {z ∈ C |Re(z) < 0}, i.e.

p = ω0e
jφ, p̄ = ω0e

−jφ ∈ C−, (31)

as the partial cancellation is not necessarily restricted to
RHP poles. For this purpose, we show that all ν = α−1,
ν ∈ N roots of p and p̄ are located in the stable region Cα,
that is

|arg(p)| > π

2
=⇒ pα ∈ Cα, α = ν−1. (32)

Equation (24) for λn = ν
√
p is equivalent to

ν arg (λn)− 2πn = φ, n = 0, 1, . . . , ν − 1. (33)

Considering the absolute values with the restricted range
0 < |arg(λn)| < π results in

ν |arg (λn)| ≥ |φ| ⇐⇒ |arg (λn)| ≥
|φ|
ν

(34)

and for |φ| > π/2 we get

|arg(p)| = |φ| > π

2
=⇒ |arg (λn)| >

π

2ν
= α

π

2
. (35)

Therefore, implication (32) holds.

As all ν-th roots are stable, any pair of conjugate complex
pseudo poles could be canceled partially. However, the
highest effect is expected for the roots closest to the
stability border because pseudo poles with |arg(λ)| < π

ν
lead to an oscillating step response, see (Monje et al.
(2010)). This applies to the principal roots

λ0 = ν
√
ω0 ej

φ
ν and λ̄0 = ν

√
ω0 e−jφν (36)

that can be cancelled using the term

Xp,α(s) =

(
1−

(
s

p

)α)(
1−

(
s

p̄

)α)

= ω−2α
0

(
s2α − 2 (sω0)

α
cos (φα) + ω2α

0

)
(37)

with α = ν−1, which coincides with Xz,α of (18) for z = p.
Thus, given a plant with a stable conjugate complex pole
pair p and p̄, i.e. arg(p) = φ > π

2 , we get

G3(s) =
ω2
0

s2 − 2sω0 cos (φ) + ω2
0

Ĝ3(s) = P (s)Ĝ3(s) (38)

and P (s)Xp,α(s) = Qp,ν(s), (39)

where Qp,ν coincides with Qz,ν in (23) for z = p. A Bode

plot of Qp,ν for p = −1ej
9π
20 and ν ∈ {2, 4} is depicted

in Fig. 4 and clearly shows the effect of the cancellation.
According to (Monje et al. (2010)), a non-oscillating step
response is expected.

Fig. 4. Bode plot of Qp,ν and Q̃p,ν opposite to the IO
term P and its compensation PD3 with D3 = P−1.

The implicit representation corresponding to (39) for
α = ν−1 can be written as

X̃p,α(s) = ω−2α
0

(
s2 − 2sω0 cos (φ) + ω2

0

)α
= P−α(s), (40)

Q̃p,ν(s) = P (s)X̃p,α(s) = P
1−ν
ν (s), (41)

leading to a similar asymptotic frequency behavior, as it
can be seen in the Bode plot of Fig. 4. However, there are
major differences at ω ≈ ω0 for both the magnitude as
well as the phase plot. As expected, explicit cancellation
of the two principal roots completely erases the oscillatory
part of the poles, whereas the implicit compensation only
reduces the amplitude peak and phase drop.

3. APPLICATION TO STANDARD CONTROL-LOOP

For analyzing effects of the partial pole/zero cancellation
on the closed-loop stability, a standard control-loop with
plant G and controller C is investigated.

The complementary, output and input sensitivity func-
tions are given by

T =
GC

1 +GC
, Sy =

1

1 +GC
, Su =

G

1 +GC
, (42)

where the argument ‘s’ is omitted for clarity.

Let G = Zk
i Ĝ and C = Q−k

i Ĉ with i ∈ {1, 2}, k ∈ {−1, 1},
whereXk

i =
∏i

m=1 X
k
z,α andQk

i =
∏i

m=1 Q
k
z,ν . If i = 1, we

consider a real z > 0, whereas z, z̄ ∈ C+ for i = 2, which
is consistent with the definitions in the previous sections.
Furthermore, we stress that all RHP-roots of GC are part
of Zk

i . Now, consider the sensitivities from above and put
the relations for G and C leading to

T =
Zk
i ĜQ−k

i Ĉ

1 + Zk
i ĜQ−k

i Ĉ

Zk
i =Xk

i Q
k
i=

Xk
i ĜĈ

1 +Xk
i ĜĈ

=
ĜĈ

X−k
i + ĜĈ

,

Sy =
1

1 + Zk
i ĜQ−k

i Ĉ
=

1

1 +Xk
i ĜĈ

and

Su =
Zk
i Ĝ

1 + Zk
i ĜQ−k

i Ĉ
=

Xk
i Q

k
i Ĝ

1 +Xk
i ĜĈ

=
Qk

i Ĝ

X−k
i + ĜĈ

.

Knowing that all RHP-roots are part of Zk
i = Xk

i Q
k
i ,

where Qk
i only has stable roots, it directly follows: The

control loop is internally stable if all roots of the FO
pseudo polynomial X−k

i + ĜĈ are located in Cα. This

also applies to the partial cancellation of a stable pair of
conjugate complex poles, as Xp,α only has stable roots.

Furthermore, it holds for the implicit terms Q̃k
i and X̃k

i ,
utilizing the approximation proposed in the next section.

To show the difference between partial cancellation of an
unstable pole and the IO unstable pole-zero cancellation,
consider the plant G, k = −1 and i = 1, i.e. G = Z−1

1 Ĝ.

For the IO cancellation we use CIO = Z1ĈIO leading to

Su,IO =
Z−1
1 Ĝ

1 + Z−1
1 ĜZ1Ĉ

=
Ĝ

Z1

(
1 + ĜĈ

) ,

where Su,IO is unstable due to the RHP pole in the
denominator, even if TIO is stabilized by CIO. In contrast,
considering the partial cancellation, we get

Su =
Q−1

z,νĜ

Xz,α + ĜĈ
=

Ĝ

Qz,ν

(
Xz,α + ĜĈ

) .

This implies that Su is stable if and only if T is stable
which is in accordance with the relation above.

4. APPROXIMATIONS OF FRACTIONAL-ORDER
TRANSFER-FUNCTIONS

Controllers with FO elements show to have advantages
as a design tool. However, for implementation purposes
in a real-time experimental setup with limited physical
memory, the non-local operator (1) is to be approximated
with IO terms to an arbitrary degree of precision (see (Li
et al., 2016)), e.g. with continued fraction expansion or
Oustaloup filter (Monje et al. (2010)). The latter approx-
imates the FO operator in a predefined frequency range
Ω = {ω ∈ R |ωl ≤ ω ≤ ωh} with an order N , leading to an
IO approximation of order Noust = 2N + 1. It is given by
(Monje et al. (2010))

sα ≈ Hα(s)=ωα
h

N∏
k=−N

s+ ω−
k

s+ ω+
k

, ω±
k = ωl

(
ωh

ωl

) k+N+(1±α)/2
2N+1

(43)
with α ∈ (0, 1), only consists of poles and zeros in C− and
therefore does not affect the open-loop design method.

An additional integrator is introduced to achieve the
correct stationary gain, i.e. we use the approximation

s−α =
s1−α

s
≈ H1−α(s)

s
, (44)

as applied e.g. by HosseinNia (2013).

In order to find an Oustaloup approximation for the im-
plicit terms (Oustaloup et al., 2000), we use the substitu-
tion s̃ = 1− s

z resulting in

Q̃−1
z,α(s) =

(
1− s

z

)−α

= s̃−α ≈ H1−α(s̃)

s̃
=

H1−α

(
1− s

z

)
1− s

z

.

For the second-order terms of the implicit representations
Q̃z,α and X̃p,α, introducing s′ = s2 − 2sω0 cos (φ) + ω2

0
would be natural. However, it turns out to be necessary to
approximate each conjugate complex root individually

X̃p,α(s) =

(
1− s

p

)α

︸ ︷︷ ︸
s̃α1

(
1− s

p̄

)α

︸ ︷︷ ︸
s̃α2

≈ s̃1s̃2
H1−α(s̃1)H1−α(s̃2)

with p and p̄ in (31) to achieve acceptable results, as
shown in Fig. 5 for p = −0.514 + j16.346 and α = 0.5.
Although H1−α(s̃1) has complex coefficients, the overall
approximation only contains real-valued coefficients.

Fig. 5. Oustaloup approximations of implicit term X̃p,α in

the range [ωl, ωh] = [0.5 rad
s , 500 rad

s ] with N = 5.

5. ILLUSTRATIVE EXAMPLE

We consider a plant with a dominant non-minimum phase
zero at z = 1 given by

G(s) =
s− 1

(1 + s
2 )(1 +

s
3 )

(45)

and design four controllers to study the effect of the
different compensation strategies:

C1(s) = k1
τs+ 1

τs
, C2(s) = k2

τs+ 1

τs
D1(s)

C3(s) = k3
τs+ 1

τs
Qz,2(s), C4(s) = k4

τs+ 1

τs
Q̃z,2(s).

All controllers consist of a classical PI controller with
proportional gain ki, i = 1, . . . , 4, and time constant τ = 2.
Controller C1 has no further component, whereas C2 ad-
ditionally pseudo compensates the non-minimum phase
zero with the IO term D1, compare (11). Both C3 and
C4 partially compensate z with the explicit and implicit
term Qz,2 of (9) and Q̃z,2 of (12), respectively. For the
comparison, all controllers are tuned to have an open-loop
crossover frequency of ωc = 0.54 rad/s. As the (partial)
compensation significantly affects the amplitude response,
the proportional gains need individual adjustments result-
ing in [k1, k2, k3, k4] = [0.68, 0.772, 1.091, 0.7245].

A Bode plot of the open loops Li = GCi is shown in
Fig. 6. Obviously, the controllers cause a different amount
of phase lag and slope at high frequencies (for the FO
elements compare Table 1). All open loops show a phase
margin of Φr,i > 55◦. Also the gain margins are considered
sufficient Ar,i > 3 dB for i = 2, 3, 4, apart from L1 with
Ar,1 = 1.26 dB. The gain at low frequencies is almost
identical, only L3 is slightly higher.

To point out the differences between the controllers, the
closed-loop step- and disturbance response are given in
Fig. 7. For these simulations, the FO elements Qz,2 and

Q̃z,2 are approximated with an Oustaloup filter in the

range [ωl, ωh] = [0.001 rad
s , 1000 rad

s ] with N = 5. In
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Fig. 6. Bode plot of Li = GCi, i = 1, . . . , 4.

addition to that, the results for C3 are verified using an
FO solver, illustrating the accuracy of the approximation.

Fig. 7. Closed-loop time-responses.

Both step-responses with C1 reveal the necessity to ad-
dress the non-minimum phase zero for this tuning if such
crossover frequency is to be achieved. Although an im-
provement of the tuning could further reduce the oscilla-
tions, the significant reduction of both the oscillations as
well as the initial undershoot are caused by the additional
controller elements. In comparison with the IO pseudo
compensation, both controllers with FO elements show
faster convergence and less overshoot for the reference
step. In this case, the initial undershoot is slightly more
visible, however still significantly less than without com-
pensation. Compared to the implicit compensation with
C4, the controller C3 with explicit partial cancellation
leads to a faster convergence, due to the higher propor-
tional gain to achieve the same crossover frequency ωc.

Also the time-response to a disturbance step in Fig. 7
shows similar behavior. The convergence with controllers
C3 and C4 is still faster than with C2, i.e. the IO pseudo
compensation. However, the transient behavior is compa-
rable with the controllers containing FO elements.

6. CONCLUSIONS

Applying the proposed methods to an example reveals the
advantages of partially compensating RHP poles/zeros.
It shows that utilizing the FO elements can reduce the
undershoot for plants involving non-minimum phase zeros
significantly. Furthermore, the FO elements introduce less
additional phase lag compared to the IO pseudo com-
pensation. If the non-minimum phase zero imposes phase
limitations, the implicit term is preferred.

Striving to counteract a low-damped pair of conjugate
complex poles, partial compensation can be useful as well.
The explicit partial cancellation completely erases the os-
cillatory behavior, whereas the implicit compensation only
reduces the resonance peak. If the implicit representation
is utilized, the Oustaloup approximation has to be carried
out separately for each conjugate complex pseudo zero.
Future work will cover the relation between order α and
time-domain overshooting as well as FO notch filter design.
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