13 research outputs found
Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts
Background To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting Cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
Mutant Actins Demonstrate a Role for Unpolymerized Actin in Control of Transcription by Serum Response Factor
Signal-induced activation of the transcription factor serum response factor (SRF) requires alterations in actin dynamics. SRF activity can be inhibited by ectopic expression of ÎČ-actin, either because actin itself participates in SRF regulation or as a consequence of cytoskeletal perturbations. To distinguish between these possibilities, we studied actin mutants. Three mutant actins, G13R, R62D, and a C-terminal VP16 fusion protein, were shown not to polymerize in vivo, as judged by two-hybrid, immunofluorescence, and cell fractionation studies. These actins effectively inhibited SRF activation, as did wild-type actin, which increased the G-actin level without altering the F:G-actin ratio. Physical interaction between SRF and actin was not detectable by mammalian or yeast two-hybrid assays, suggesting that SRF regulation involves an unidentified cofactor. SRF activity was not blocked upon inhibition of CRM1-mediated nuclear export by leptomycin B. Two actin mutants were identified, V159N and S14C, whose expression favored F-actin formation and which strongly activated SRF in the absence of external signals. These mutants seemed unable to inhibit SRF activity, because their expression did not reduce the absolute level of G-actin as assessed by DNase I binding. Taken together, these results provide strong evidence that G-actin, or a subpopulation of it, plays a direct role in signal transduction to SRF