750 research outputs found
Recommended from our members
Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation.
Blood vessels in the central nervous system (CNS) develop unique features, but the contribution of CNS neurons to regulating those features is not fully understood. We report that inhibiting spontaneous cholinergic activity or reducing starburst amacrine cell numbers prevents invasion of endothelial cells into the deep layers of the retina and causes blood-retinal-barrier (BRB) dysfunction in mice. Vascular endothelial growth factor (VEGF), which drives angiogenesis, and Norrin, a Wnt ligand that induces BRB properties, are decreased after activity blockade. Exogenous VEGF restores vessel growth but not BRB function, whereas stabilizing beta-catenin in endothelial cells rescues BRB dysfunction but not vessel formation. We further identify that inhibiting cholinergic activity reduces angiogenesis during oxygen-induced retinopathy. Our findings demonstrate that neural activity lies upstream of VEGF and Norrin, coordinating angiogenesis and BRB formation. Neural activity originating from specific neural circuits may be a general mechanism for driving regional angiogenesis and barrier formation across CNS development
Assessing the organizational context for EBP implementation: the development and validity testing of the Implementation Climate Scale (ICS)
BACKGROUND: Although the importance of the organizational environment for implementing evidence-based practices (EBP) has been widely recognized, there are limited options for measuring implementation climate in public sector health settings. The goal of this research was to develop and test a measure of EBP implementation climate that would both capture a broad range of issues important for effective EBP implementation and be of practical use to researchers and managers seeking to understand and improve the implementation of EBPs. METHODS: Participants were 630 clinicians working in 128 work groups in 32 US-based mental health agencies. Items to measure climate for EBP implementation were developed based on past literature on implementation climate and other strategic climates and in consultation with experts on the implementation of EBPs in mental health settings. The sample was randomly split at the work group level of analysis; half of the sample was used for exploratory factor analysis (EFA), and the other half was used for confirmatory factor analysis (CFA). The entire sample was utilized for additional analyses assessing the reliability, support for level of aggregation, and construct-based evidence of validity. RESULTS: The EFA resulted in a final factor structure of six dimensions for the Implementation Climate Scale (ICS): 1) focus on EBP, 2) educational support for EBP, 3) recognition for EBP, 4) rewards for EBP, 5) selection for EBP, and 6) selection for openness. This structure was supported in the other half of the sample using CFA. Additional analyses supported the reliability and construct-based evidence of validity for the ICS, as well as the aggregation of the measure to the work group level. CONCLUSIONS: The ICS is a very brief (18 item) and pragmatic measure of a strategic climate for EBP implementation. It captures six dimensions of the organizational context that indicate to employees the extent to which their organization prioritizes and values the successful implementation of EBPs. The ICS can be used by researchers to better understand the role of the organizational context on implementation outcomes and by organizations to evaluate their current climate as they consider how to improve the likelihood of implementation success. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13012-014-0157-1) contains supplementary material, which is available to authorized users
Testing the leadership and organizational change for implementation (LOCI) intervention in substance abuse treatment: A cluster randomized trial study protocol
© 2017 The Author(s). Background: Evidence-based practice (EBP) implementation represents a strategic change in organizations that requires effective leadership and alignment of leadership and organizational support across organizational levels. As such, there is a need for combining leadership development with organizational strategies to support organizational climate conducive to EBP implementation. The leadership and organizational change for implementation (LOCI) intervention includes leadership training for workgroup leaders, ongoing implementation leadership coaching, 360° assessment, and strategic planning with top and middle management regarding how they can support workgroup leaders in developing a positive EBP implementation climate. Methods: This test of the LOCI intervention will take place in conjunction with the implementation of motivational interviewing (MI) in 60 substance use disorder treatment programs in California, USA. Participants will include agency executives, 60 program leaders, and approximately 360 treatment staff. LOCI will be tested using a multiple cohort, cluster randomized trial that randomizes workgroups (i.e., programs) within agency to either LOCI or a webinar leadership training control condition in three consecutive cohorts. The LOCI intervention is 12months, and the webinar control intervention takes place in months 1, 5, and 8, for each cohort. Web-based surveys of staff and supervisors will be used to collect data on leadership, implementation climate, provider attitudes, and citizenship. Audio recordings of counseling sessions will be coded for MI fidelity. The unit of analysis will be the workgroup, randomized by site within agency and with care taken that co-located workgroups are assigned to the same condition to avoid contamination. Hierarchical linear modeling (HLM) will be used to analyze the data to account for the nested data structure. Discussion: LOCI has been developed to be a feasible and effective approach for organizations to create a positive climate and fertile context for EBP implementation. The approach seeks to cultivate and sustain both effective general and implementation leadership as well as organizational strategies and support that will remain after the study has ended. Development of a positive implementation climate for MI should result in more positive service provider attitudes and behaviors related to the use of MI and, ultimately, higher fidelity in the use of MI. Trial registration: This study is registered with Clinicaltrials.gov ( NCT03042832 ), 2 February 2017, retrospectively registered
Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience
Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue
The Architecture of the Adhesive Apparatus of Cultured Osteoclasts: From Podosome Formation to Sealing Zone Assembly
BACKGROUND: Osteoclasts are bone-degrading cells, which play a central role in physiological bone remodeling. Unbalanced osteoclast activity is largely responsible for pathological conditions such as osteoporosis. Osteoclasts develop specialized adhesion structures, the so-called podosomes, which subsequently undergo dramatic reorganization into sealing zones. These ring-like adhesion structures, which delimit the resorption site, effectively seal the cell to the substrate forming a diffusion barrier. The structural integrity of the sealing zone is essential for the cell ability to degrade bone, yet its structural organization is poorly understood. PRINCIPAL FINDINGS: Combining high-resolution scanning electron microscopy with fluorescence microscopy performed on the same sample, we mapped the molecular architecture of the osteoclast resorptive apparatus from individual podosomes to the sealing zone, at an unprecedented resolution. Podosomes are composed of an actin-bundle core, flanked by a ring containing adhesion proteins connected to the core via dome-like radial actin fibers. The sealing zone, hallmark of bone-resorbing osteoclasts, consists of a dense array of podosomes communicating through a network of actin filaments, parallel to the substrate and anchored to the adhesive plaque domain via radial actin fibers. SIGNIFICANCE: The sealing zone of osteoclasts cultured on bone is made of structural units clearly related to individual podosomes. It differs from individual or clustered podosomes in the higher density and degree of inter-connectivity of its building blocks, thus forming a unique continuous functional structure connecting the cell to its extracellular milieu. Through this continuous structure, signals reporting on the substrate condition may be transmitted to the whole cell, modulating the cell response under physiological and pathological conditions
Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors
Implementation science is a quickly growing discipline. Lessons learned from business and medical settings are being applied but it is unclear how well they translate to settings with different historical origins and customs (e.g., public mental health, social service, alcohol/drug sectors). The purpose of this paper is to propose a multi-level, four phase model of the implementation process (i.e., Exploration, Adoption/Preparation, Implementation, Sustainment), derived from extant literature, and apply it to public sector services. We highlight features of the model likely to be particularly important in each phase, while considering the outer and inner contexts (i.e., levels) of public sector service systems
Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 Multiple Osteochondromas families
<p>Abstract</p> <p>Background</p> <p>Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in <it>EXT1 </it>or <it>EXT2</it>, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.</p> <p>Methods</p> <p>Here we report on the first molecular characterization of ten large <it>EXT1</it>- and <it>EXT2</it>-deletions in MO-patients. Deletions were initially indentified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.</p> <p>Results</p> <p>Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One <it>EXT2 </it>exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of <it>EXT1 </it>and <it>EXT2</it>. Non-allelic homologous recombination (NAHR) mediated by <it>Alu</it>-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.</p> <p>Conclusions</p> <p>Molecular characterization of <it>EXT1</it>- and <it>EXT2</it>-deletion breakpoints in MO-patients indicates that NAHR between <it>Alu-</it>sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in <it>EXT1 </it>and <it>EXT2</it>.</p
Negotiating agency: Amish and ultra-Orthodox womenâs responses to the Internet
This study explores how women in two devout religious communities cope with the Internet and its apparent incompatibility with their communitiesâ values and practices. Questionnaires containing both closed and open-ended questions were completed by 82 participants, approximately half from each community. While their discourses included similar framings of danger and threat, the two groups manifested different patterns of Internet use (and nonuse). Rigorous adherence to religious dictates is greatly admired in these communities, and the women take pride in manipulating their status in them. Their agency is reflected in how they negotiate the tension inherent in their roles as both gatekeepers and agents-of-change, which are analyzed as valuable currencies in their cultural and religious markets
New Suggestions for the Mechanical Control of Bone Remodeling
Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from Ό-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone
- âŠ