139 research outputs found

    Inter-diffusion of Plasmonic Metals and Phase Change Materials

    Full text link
    This work investigates the problematic diffusion of metal atoms into phase change chalcogenides, which can destroy resonances in photonic devices. Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The diffusion of metal atoms influences the crystallisation temperature and optical properties of phase change materials. When Au, Ag, Al, W structures are directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2 layers at the interface. Diffusion barrier layers, such as Si3N4 or stable diffusionless plasmonic materials, such as TiN, can prevent the interfacial damage. This work shows that the interfacial diffusion must be considered when designing phase change material tuned photonic devices, and that TiN is the most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl

    EssC:domain structures inform on the elusive translocation channels in the Type VII secretion system.

    Get PDF
    The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1–D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus. The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein

    Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Get PDF
    Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs) in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL) efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM) of PL (26 nm). Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.%) of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585) was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm) and high QY of PL (35–55%)

    Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    Get PDF
    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation

    Relationships among organizational culture, knowledge acquisition, organizational learning, and organizational innovation in Taiwan's banking and insurance industries

    Get PDF
    [[abstract]]This article investigates the relationships among organizational culture (OC), knowledge acquisition (KA), organizational learning (OL), and organizational innovation (OI) in Taiwan's banking and insurance industries. We use the top 100 financial enterprises in Taiwan published by Common Wealth Magazine in 2005 as the population and 23 of them are chosen as the sample in this study. A total of 785 questionnaires were issued and 449 valid replies were received. The research results indicate that OL serves as a partial mediator between OC and OI. In addition, this article finds that OC affects OL and innovation through KA. Furthermore, OL has a full mediation effect on KA and OI.[[incitationindex]]SSCI[[booktype]]電子版[[booktype]]紙

    The Infection and Impact of Azorhizobium Caulinodans ORS571 on Wheat (Triticum Aestivum L.)

    Get PDF
    Based on our previous study, cereal crop wheat (Triticum aestivum L.) could be infected by rhizobia Azorhizobium caulinodans ORS571, and form para-nodules with the induction of 2.4-dichlorophenoxyacetic acid, a common plant growth regulator. To enhance this infection and the potential agricultural application, we compared six different infection methods (Direct seed dip; Seed germination dip; Pruned-root dip; Foliar spray; Circum-soil dip; Seed dip and circum-soil dip) for achieving the high efficient infection of A. caulinodans into wheat plants by employing a green fluorescent protein (gfp)-labeled Azorhizobium caulinodans strain ORS571. With proper methods, copious rhizobia could enter the interior and promote the growth of wheat to the hilt. Circum-soil dip was proved to be the most efficient method, seed germination dip and pruned-root dip is the last recommended to infect wheat, seed germination dip and seed dip and circum-soil dip showed better effects on plant growth, pruned-root dip did not show too much effect on plant growth. This study laid the foundation for understanding the interaction between rhizobia and cereal crops and the growth-promoting function of rhizobia

    From Mendel’s discovery on pea to today’s plant genetics and breeding

    Get PDF
    In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner
    corecore