9 research outputs found

    Time-resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings

    Get PDF
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12994. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Peer reviewedPublisher PD

    The 2018 biomembrane curvature and remodeling roadmap

    Get PDF
    The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo-and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area

    Complete genome sequence of Thermosphaera aggregans type strain (M11TLT)

    Get PDF
    Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TLT was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project

    Soft Matrices Suppress Cooperative Behaviors among Receptor-Ligand Bonds in Cell Adhesion

    Get PDF
    The fact that biological tissues are stable over prolonged periods of time while individual receptor-ligand bonds only have limited lifetime underscores the critical importance of cooperative behaviors of multiple molecular bonds, in particular the competition between the rate of rupture of closed bonds (death rate) and the rate of rebinding of open bonds (birth rate) in a bond cluster. We have recently shown that soft matrices can greatly increase the death rate in a bond cluster by inducing severe stress concentration near the adhesion edges. In the present paper, we report a more striking effect that, irrespective of stress concentration, soft matrices also suppress the birth rate in a bond cluster by increasing the local separation distance between open bonds. This is shown by theoretical analysis as well as Monte Carlo simulations based on a stochastic-elasticity model in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial force/separation are unified in a single modeling framework. Our findings not only are important for understanding the role of elastic matrices in cell adhesion, but also have general implications on adhesion between soft materials
    corecore