1,684 research outputs found

    Vigorous atmospheric motion in the red supergiant star Antares

    Full text link
    Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.Comment: 27 pages, 8 figures, published in Natur

    HD 85567: A Herbig B[e] star or an interacting B[e] binary

    Full text link
    Context. HD 85567 is an enigmatic object exhibiting the B[e] phenomenon, i.e. an infrared excess and forbidden emission lines in the optical. The object's evolutionary status is uncertain and there are conflicting claims that it is either a young stellar object or an evolved, interacting binary. Aims. To elucidate the reason for the B[e] behaviour of HD 85567, we have observed it with the VLTI and AMBER. Methods. Our observations were conducted in the K-band with moderate spectral resolution (R~1500, i.e. 200 km/s). The spectrum of HD 85567 exhibits Br gamma and CO overtone bandhead emission. The interferometric data obtained consist of spectrally dispersed visibilities, closure phases and differential phases across these spectral features and the K-band continuum. Results. The closure phase observations do not reveal evidence of asymmetry. The apparent size of HD 85567 in the K-band was determined by fitting the visibilities with a ring model. The best fitting radius, 0.8 +/- 0.3 AU, is relatively small making HD 85567 undersized in comparison to the size-luminosity relationship based on YSOs of low and intermediate luminosity. This has previously been found to be the case for luminous YSOs, and it has been proposed that this is due to the presence of an optically thick gaseous disc. We demonstrate that the differential phase observations over the CO bandhead emission are indeed consistent with the presence of a compact (~1 AU) gaseous disc interior to the dust sublimation radius. Conclusions. The observations reveal no sign of binarity. However, the data do indicate the presence of a gaseous disc interior to the dust sublimation radius. We conclude that the data are consistent with the hypothesis that HD 85567 is a YSO with an optically thick gaseous disc within a larger dust disc that is being photo-evaporated from the outer edge.Comment: Accepted for publication in A &

    Spatially resolved H_2 emission from a very low-mass star

    Full text link
    Molecular outflows from very low-mass stars (VLMSs) and brown dwarfs have been studied very little. So far, only a few CO outflows have been observed, allowing us to map the immediate circumstellar environment. We present the first spatially resolved H2 emission around IRS54 (YLW52), a ~0.1-0.2 Msun Class I source. By means of VLT SINFONI K-band observations, we probed the H2 emission down to the first ~50 AU from the source. The molecular emission shows a complex structure delineating a large outflow cavity and an asymmetric molecular jet. Thanks to the detection of several H2 transitions, we are able to estimate average values along the jet-like structure (from source position to knot D) of Av~28 mag, T~2000-3000 K, and H2 column density N(H2)~1.7x10^17 cm^-2. This allows us to estimate a mass loss rate of ~2x10^-10 Msun/yr for the warm H2 component . In addition, from the total flux of the Br Gamma line, we infer an accretion luminosity and mass accretion rate of 0.64 Lsun and ~3x10^-7 Msun/yr, respectively. The outflow structure is similar to those found in low-mass Class I and CTTS. However, the Lacc/Lbol ratio is very high (~80%), and the mass accretion rate is about one order of magnitude higher when compared to objects of roughly the same mass, pointing to the young nature of the investigated source.Comment: accepted as a Letter in A&

    Bispectrum speckle interferometry of the massive protostellar outflow source IRAS 23151+5912

    Full text link
    We present bispectrum speckle interferometry of the massive protostellar object IRAS 23151+5912 in the near-infrared K' band. The reconstructed image shows the diffuse nebulosity north-east of two point-like sources in unprecedented detail. The comparison of our near-infrared image with mm continuum and CO molecular line maps shows that the brighter of the two point sources lies near the center of the mm peak, indicating that it is a high-mass protostar. The nebulosity coincides with the blue-shifted molecular outflow component. The most prominent feature in the nebulosity is a bow-shock-like arc. We assume that this feature is associated with a precessing jet which has created an inward-pointed cone in the swept-up material. We present numerical jet simulations that reproduce this and several other features observed in our speckle image of the nebulosity. Our data also reveal a linear structure connecting the central point source to the extended diffuse nebulosity. This feature may represent the innermost part of a jet that drives the strong molecular outflow (PA ~80 degr) from IRAS 23151+5912. With the aid of radiative transfer calculations, we demonstrate that, in general, the observed inner structures of the circumstellar material surrounding high-mass stars are strongly influenced by the orientation and symmetry of the bipolar cavity.Comment: accepted by Astronomy & Astrophysics; preprints with high-resolution images can be obtained from http://www.mpifr-bonn.mpg.de/staff/tpreibis/iras23151.htm

    Embedded AGN and star formation in the central 80 pc of IC 3639

    Full text link
    [Abridged] Methods: We use interferometric observations in the NN-band with VLTI/MIDI to resolve the mid-IR nucleus of IC 3639. The origin of the nuclear infrared emission is determined from: 1) the comparison of the correlated fluxes from VLTI/MIDI with the fluxes measured at subarcsec resolution (VLT/VISIR, VLT/ISAAC); 2) diagnostics based on IR fine-structure line ratios, the IR continuum emission, IR bands produced by polycyclic aromatic hydrocarbons (PAH) and silicates; and 3) the high-angular resolution spectral energy distribution. Results: The unresolved flux of IC 3639 is 90±20 mJy90 \pm 20\, \rm{mJy} at 10.5 μm10.5\, \rm{\mu m}, measured with three different baselines in VLTI (UT1-UT2, UT3-UT4, and UT2-UT3; 4646-58 m58\, \rm{m}), making this the faintest measurement so far achieved with mid-IR interferometry. The correlated flux is a factor of 33-44 times fainter than the VLT/VISIR total flux measurement. The observations suggest that most of the mid-IR emission has its origin on spatial scales between 1010 and 80 pc80\, \rm{pc} (4040-340 mas340\, \rm{mas}). A composite scenario where the star formation component dominates over the AGN is favoured by the diagnostics based on ratios of IR fine-structure emission lines, the shape of the IR continuum, and the PAH and silicate bands. Conclusions: A composite AGN-starburst scenario is able to explain both the mid-IR brightness distribution and the IR spectral properties observed in the nucleus of IC 3639. The nuclear starburst would dominate the mid-IR emission and the ionisation of low-excitation lines (e.g. [NeII]12.8μm_{12.8 \rm{\mu m}}) with a net contribution of ∼70%\sim 70\%. The AGN accounts for the remaining ∼30%\sim 30\% of the mid-IR flux, ascribed to the unresolved component in the MIDI observations, and the ionisation of high-excitation lines (e.g. [NeV]14.3μm_{14.3 \rm{\mu m}} and [OIV]25.9μm_{25.9 \rm{\mu m}}).Comment: Accepted for publication in A&
    • …
    corecore