141 research outputs found

    CD45 Isoform Expression in Microglia and Inflammatory Cells in HIV-1 Encephalitis

    Get PDF
    CD45 is a membrane tyrosine phosphatase that modulates the function of the hematopoietic cells. In vitro, agonist antibodies to CD45RO or CD45RB isoforms have been shown to suppress microglial activation, but whether microglia in vivo express these isoforms in HIV encephalitis (HIVE) is unknown. Brain sections from control and HIVE were immunostained for CD45 isoforms using exon-specific antibodies (RA, RB, RC and RO). RA and RC were limited to rare lymphocytes, while RB expression was robust in microglia and inflammatory cells. RO was low in control microglia, but increased in HIVE. RO was also localized to macrophages and CD8+ T cells. Targeting CD45 in vivo with isoform-specific antibodies remains a therapeutic option for neuroinflammatory diseases

    Rad26p regulates the occupancy of histone H2A–H2B dimer at the active genes in vivo

    Get PDF
    Recently, we have demonstrated a predominant association of Rad26p with the coding sequences but not promoters of several GAL genes following transcriptional induction. Here, we show that the occupancy of histone H2A–H2B dimer at the coding sequences of these genes is not altered following transcriptional induction in the absence of Rad26p. A histone H2A–H2B dimer-enriched chromatin in Δrad26 is correlated to decreased association of RNA polymerase II with the active coding sequences (and hence transcription). However, the reduced association of RNA polymerase II with the active coding sequence in the absence of Rad26p is not due to the defect in formation of transcription complex at the promoter. Thus, Rad26p regulates the occupancy of histone H2A–H2B dimer, which is correlated to the association of elongating RNA polymerase II with active GAL genes. Similar results are also found at other inducible non-GAL genes. Collectively, our results define a new role of Rad26p in orchestrating chromatin structure and hence transcription in vivo

    The Cockayne Syndrome Natural History (CoSyNH) study:clinical findings in 102 individuals and recommendations for care

    Get PDF
    Purpose: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established. Methods: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians. Results and Conclusion: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses
    corecore