181 research outputs found

    Adaptive robust control for networked strict-feedback nonlinear systems with state and input quantization

    Get PDF
    Funding Information: Funding: This work was supported in part by the National Natural Science Foundation of China under Grant 62022031, Grant 61773135, Grant U20A20188; and in part by the Fundamental Research Funds for the Central Universities. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Backstepping method is a successful approach to deal with the systems in strict-feedback form. However, for networked control systems, the discontinuous virtual law caused by state quantization introduces huge challenges for its applicability. In this article, a quantized adaptive robust control approach in backsetpping framework is developed in this article for networked strict-feedback nonlinear systems with both state and input quantization. In order to prove the efficiency of the designed control scheme, a novel form of Lyapunov candidate function was constructed in the process of analyzing the stability, which is applicable for the systems with nondifferentiable virtual control law. In particular, the state and input quantizers can be in any form as long as they meet the sector-bound condition. The theoretic result shows that the tracking error is determined by the pregiven constants and quantization errors, which are also verified by the simulation results.publishersversionpublishe

    Minimalist and High-Performance Semantic Segmentation with Plain Vision Transformers

    Full text link
    In the wake of Masked Image Modeling (MIM), a diverse range of plain, non-hierarchical Vision Transformer (ViT) models have been pre-trained with extensive datasets, offering new paradigms and significant potential for semantic segmentation. Current state-of-the-art systems incorporate numerous inductive biases and employ cumbersome decoders. Building upon the original motivations of plain ViTs, which are simplicity and generality, we explore high-performance `minimalist' systems to this end. Our primary purpose is to provide simple and efficient baselines for practical semantic segmentation with plain ViTs. Specifically, we first explore the feasibility and methodology for achieving high-performance semantic segmentation using the last feature map. As a result, we introduce the PlainSeg, a model comprising only three 3×\times3 convolutions in addition to the transformer layers (either encoder or decoder). In this process, we offer insights into two underlying principles: (i) high-resolution features are crucial to high performance in spite of employing simple up-sampling techniques and (ii) the slim transformer decoder requires a much larger learning rate than the wide transformer decoder. On this basis, we further present the PlainSeg-Hier, which allows for the utilization of hierarchical features. Extensive experiments on four popular benchmarks demonstrate the high performance and efficiency of our methods. They can also serve as powerful tools for assessing the transfer ability of base models in semantic segmentation. Code is available at \url{https://github.com/ydhongHIT/PlainSeg}

    Representation Separation for Semantic Segmentation with Vision Transformers

    Full text link
    Vision transformers (ViTs) encoding an image as a sequence of patches bring new paradigms for semantic segmentation.We present an efficient framework of representation separation in local-patch level and global-region level for semantic segmentation with ViTs. It is targeted for the peculiar over-smoothness of ViTs in semantic segmentation, and therefore differs from current popular paradigms of context modeling and most existing related methods reinforcing the advantage of attention. We first deliver the decoupled two-pathway network in which another pathway enhances and passes down local-patch discrepancy complementary to global representations of transformers. We then propose the spatially adaptive separation module to obtain more separate deep representations and the discriminative cross-attention which yields more discriminative region representations through novel auxiliary supervisions. The proposed methods achieve some impressive results: 1) incorporated with large-scale plain ViTs, our methods achieve new state-of-the-art performances on five widely used benchmarks; 2) using masked pre-trained plain ViTs, we achieve 68.9% mIoU on Pascal Context, setting a new record; 3) pyramid ViTs integrated with the decoupled two-pathway network even surpass the well-designed high-resolution ViTs on Cityscapes; 4) the improved representations by our framework have favorable transferability in images with natural corruptions. The codes will be released publicly.Comment: 17 pages, 13 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Time-Delayed Data Informed Reinforcement Learning for Approximate Optimal Tracking Control

    Full text link
    This paper proposes a time-delayed data informed reinforcement learning method, referred as incremental adaptive dynamic programming, to learn approximate solutions to optimal tracking control problems (OTCPs) of high-dimensional nonlinear systems. Departing from available solutions to OTCPs, our developed tracking control scheme settles the curse of complexity problem in value function approximation from a decoupled way, circumvents the learning inefficiency regarding varying desired trajectories by avoiding introducing a reference trajectory dynamics into the learning process, and requires neither an accurate nor identified dynamics using time-delayed signals. Specifically, the intractable OTCP of a high-dimensional uncertain system is first converted into multiple manageable sub-OTCPs of low-dimensional incremental subsystems constructed using time-delayed data. Then, the resulting sub-OTCPs are approximately solved by a parallel critic learning structure. The proposed tracking control scheme is developed with rigorous theoretical analysis of system stability and weight convergence, and validated experimentally on a 3-DoF robot manipulator

    Fast and Unbiased Estimation of Volume Under Ordered Three-Class ROC Surface (VUS) With Continuous or Discrete Measurements

    Get PDF
    Receiver Operating Characteristic (ROC) surfaces have been studied in the literature essentially during the last decade and are considered as a natural generalization of ROC curves in three-class problems. The volume under the surface (VUS) is useful for evaluating the performance of a trichotomous diagnostic system or a three-class classifier's overall accuracy when the possible disease condition or sample belongs to one of three ordered categories. In the areas of medical studies and machine learning, the VUS of a new statistical model is typically estimated through a sample of ordinal and continuous measurements obtained by some suitable specimens. However, discrete scales of the prediction are also frequently encountered in practice. To deal with such scenario, in this paper, we proposed a unified and efficient algorithm of linearithmic order, based on dynamic programming, for unbiased estimation of the mean and variance of VUS with unidimensional samples drawn from continuous or non-continuous distributions. Monte Carlo simulations verify our theoretical findings and developed algorithms

    Traffic-Aware Ecological Cruising Control for Connected Electric Vehicle

    Get PDF
    The advent of intelligent connected technology has greatly enriched the capabilities of vehicles in acquiring information. The integration of short-term information from limited sensing range and long-term information from cloud-based systems in vehicle motion planning and control has become a vital means to deeply explore the energy-saving potential of vehicles. In this study, a traffic-aware ecological cruising control (T-ECC) strategy based on a hierarchical framework for connected electric vehicles in uncertain traffic environments is proposed, leveraging the two distinct temporal-dimension information. In the upper layer that is dedicated for speed planning, a sustainable energy consumption strategy (SECS) is introduced for the first time. It finds the optimal economic speed by converting variations in kinetic energy into equivalent battery energy consumption based on long-term road information. In the lower layer, a synthetic rolling-horizon optimization control (SROC) is developed to handle real-time traffic uncertainties. This control approach jointly optimizes energy efficiency, battery life, driving safety, and comfort for vehicles under dynamically changing traffic conditions. Notably, a stochastic preceding vehicle model is presented to effectively capture the uncertainties in traffic during the driving process. Finally, the proposed T-ECC is validated through simulations in both virtual and real-world driving conditions. Results demonstrate that the proposed strategy significantly improves the energy efficiency of the vehicle

    Characterising User Transfer Amid Industrial Resource Variation: A Bayesian Nonparametric Approach

    Full text link
    In a multitude of industrial fields, a key objective entails optimising resource management whilst satisfying user requirements. Resource management by industrial practitioners can result in a passive transfer of user loads across resource providers, a phenomenon whose accurate characterisation is both challenging and crucial. This research reveals the existence of user clusters, which capture macro-level user transfer patterns amid resource variation. We then propose CLUSTER, an interpretable hierarchical Bayesian nonparametric model capable of automating cluster identification, and thereby predicting user transfer in response to resource variation. Furthermore, CLUSTER facilitates uncertainty quantification for further reliable decision-making. Our method enables privacy protection by functioning independently of personally identifiable information. Experiments with simulated and real-world data from the communications industry reveal a pronounced alignment between prediction results and empirical observations across a spectrum of resource management scenarios. This research establishes a solid groundwork for advancing resource management strategy development

    Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics

    Get PDF
    The mechanisms underpinning high energy storage density in lead-free Ag1–3xNdxTayNb1-yO3 antiferroelectric (AFE) ceramics have been investigated. Rietveld refinements of in-situ synchrotron X-ray data reveal that the structure remains quadrupled and orthorhombic under electric field (E) but adopts a non-centrosymmetric space group, Pmc21, in which the cations exhibit a ferrielectric configuration. Nd and Ta doping both stabilize the AFE structure, thereby increasing the AFE-ferrielectric switching field from 150 to 350 kV cm−1. Domain size and correlation length of AFE/ferrielectric coupling reduce with Nd doping, leading to slimmer hysteresis loops. The maximum polarization (Pmax) is optimized through A-site aliovalent doping which also decreases electrical conductivity, permitting the application of a larger E. These effects combine to enhance energy storage density to give Wrec = 6.5 J cm−3 for Ag0.97Nd0.01Ta0.20Nb0.80O3
    • …
    corecore