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Abstract: Backstepping method is a successful approach to deal with the systems in strict-feedback
form. However, for networked control systems, the discontinuous virtual law caused by state
quantization introduces huge challenges for its applicability. In this article, a quantized adaptive
robust control approach in backsetpping framework is developed in this article for networked strict-
feedback nonlinear systems with both state and input quantization. In order to prove the efficiency
of the designed control scheme, a novel form of Lyapunov candidate function was constructed in the
process of analyzing the stability, which is applicable for the systems with nondifferentiable virtual
control law. In particular, the state and input quantizers can be in any form as long as they meet
the sector-bound condition. The theoretic result shows that the tracking error is determined by the
pregiven constants and quantization errors, which are also verified by the simulation results.

Keywords: state and input quantization; networked control systems; uncertain systems; nonlinear
systems; adaptive robust control

1. Introduction

Nonlinear systems in parametric strict-feedback form with uncertainties have been
investigated a lot due to their widespread applications in modeling real systems, such
as chaotic systems, robot/manipulator systems, vehicle systems and so on [1–4]. The
backstepping method, proposed by Petar V. Kokotovic in [5] in 1992, is a successful way to
deal with the systems in strict-feedback form. Under this method, the plant can be divided
into a variety of subsystems by introducing virtual control inputs, and then, a step-by-step
controller is designed for the plant. As for system uncertainties that are inevitable in real
systems, there are two sorts of classical schemes to design the controller, i.e., adaptive
control (AC, [6]) and deterministic robust control (DRC, see [7]). These two control laws
have their own advantages and disadvantages: under the AC method, the closed-loop
system is asymptotically stable in the existence of uncertain parameters only, but it may
lead to instability when there is disturbance; under the DRC method, uniform ultimate
boundedness (UUB) is guaranteed in the case of both uncertain parameters and disturbance.
In [8], adaptive robust control (ARC) was proposed by Bin Yao and Masayoshi Tomizuka,
which combined the advantages of both AC and DRC. That is, not only is the UUB property
guaranteed when the system is under uncertain parameters and disturbance, but also the
asymptotic stability is guaranteed under the uncertain parameters only. Just about these
good properties of ARC, it has been widely applied in many engineering systems [9–11].

In modern society, networked control systems have been widespread investigated due
to their own benefits such as low installation and maintenance cost, strong anti-interference
capability of the signal, easily encrypting, storing or processing and so on. These benefits
give a great impetus to develop and expand its application fields, especially in power sys-
tems, vehicle industry, teleoperation and network-based process control engineering [12,13].
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However, the traditional backstepping method is hard to apply to systems in strict-feedback
form for the reason that in such a system, the signal transmission between controller and
plant is achieved via a digital communication network (see Figure 1), which may draw into
various problems, such as time delays (deterministic delays and stochastic delays, [14]),
sampling [15], packet losses (off-line algorithm [16] and on-line algorithm [17]) or packet
disorder [18] and signal quantization [19]. For parametric strict-feedback nonlinear systems,
some of these issues have been solved well in the past few years. In [20], the time-delay
problem was considered and dealt with via adaptive NN backstepping control; while
in [21], the Lemma 1 solved the sampling problem, and an adaptive sampled-data control
scheme was designed for a certain class of nonlinear systems. The packet losses and time
delay were considered by Wang et al. in [16].

Figure 1. The signal transmission in networked control systems.

Although there have been many results for networked control systems in strict-
feedback form, few results aim at signal quantization, especially state quantization [22–24].
In the past decades, input quantization has been widely concerned. In [25], L1 adaptive con-
troller was put forward for a class of uncertain nonlinear system. Jing Zhou et al. designed
an adaptive backstepping controller for a class of strict feedback system with quantized
input signals in [26]. After that, Lantao Xing et al. further investigated the output feedback
problem of systems in strict feedback form and proposed an adaptive output-feedback
control scheme in [27]. Moreover, in [28], a control method based on set-valued map was
presented for nonlinear systems in strict-feedback form with quantized states. However,
the complexity of this method restricts its application. In addition, it may be inapplicable
when there are external disturbances. In a word, it is quite necessary to propose a universal
method to deal with state and input quantization problems of strict-feedback systems.

This paper focuses on a class of uncertain nonlinear systems in strict feedback form
with quantized states and input feedback. An ARC law is designed for concerned systems
to ensure stability and tracking performance. The main contributions are summarized
as follows: Firstly, we construct a novel differentiable and positive definite Lyapunov
candidate function V(t) via the states of the plant and the nondifferentiable virtual control
law. Then, based on the backstepping method and the proposed Lyapunov candidate
function, the detailed design processes of the ARC law are given in a step-by-step way. The
analysis illustrates that under the designed controller, the closed-loop system is UUB in
spite of the high uncertainties and quantized errors. To verify the universality of our results,
in the simulation part, we employ both uniform quantizers and logarithmic quantizers for
signal quantization. Moreover, both the stability and tracking problems are considered
in simulation.
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This paper is organized as follows: In Section 2, the sector boundary condition is
introduced and the problem formulation is illustrated. The ARC scheme based on back-
stepping method is designed in Section 3 for the uncertain nonlinear systems in parameter
strict-feedback form with state and input quantization. The simulation part follows in
Section 4, which verifies the theoretical result above. Finally, the conclusion is given in
Section 5.

Notation 1. R represents the field of real numbers. •̇, •̈, . . . , •(n) denote for the first-order, second-
order, · · · , and nth-order derivative of • with respect to time t. •̄i = [•1, •2, . . . , •i]. ‖ • ‖
represents the Frobenius norm of a matrix B or Euclidean norm of a vector ξ, i.e., ‖B‖ =

√
∑i,j b2

ij

and ‖ξ‖ =
√

∑i ξ2
i . B> denotes the transposition of B.

2. Problem Statement

Without loss of generality, consider the following SISO nonlinear system with uncer-
tain parameters and disturbances:

ẋi = ϕ>i (x̄i, t)θ + xi+1 + Di, i = 1, 2, · · · , n− 1,

ẋn = ϕ>n (x̄n, t)θ + uq + Dn,

y = x1,

(1)

where x1, x2, · · · , xn ∈ R are the states of the system; x̄i = [x1, x2, · · · , xi]; θ = [θ1, θ2, · · · ,
θp]>, θi ∈ R are the unknown parameters; for i = 1, 2, · · · , n, ϕi = ϕi(x̄i, t) : Ri × R→ Rp

are all known function vectors; Di ∈ R are the unknown functions representing the time-
varying disturbances and the unmodeled dynamics; y ∈ R and uq = Qu(u) ∈ R are
the output and quantized input, respectively; u = u(t, x̄qi) ∈ R is the quantized states
feedback controller and xqi = Qi(xi) are the quantized states. Actually, the result in this
paper can be easily generalized to the case that xi are all m-dimensional vectors.

For the requirement of later analysis, the following conditions are assumed on
the plant:

Assumption 1. The uncertain parameters θi and unknown functions Di, i = 1, 2, · · · , n are all
bounded, i.e.,

θi ∈ [θi min, θi max]
.
= Ωi, |Di| ≤ di, (2)

where θi min and θi max are the lower and upper bound of θi; di are the boundary of the un-
known function Di. Denote Ωθ

.
= {θ : θi ∈ Ωi}; θmax = [θ1 max, · · · , θp max]>; θmin =

[θ1 min, · · · , θp min]
>; and θm = max

i
(|θi max|, |θi min|).

Assumption 2. For all i = 1, 2, · · · , n and x̄i, ϕi(x̄i, t) is continuous differentiable up to order

n− i with respect to xj, j = 1, 2, · · · , i and t. Moreover, ∂n−i ϕi
∂xn−i

j
satisfy the Lipschitz condition with

respect to x̄i.

Assumption 3. The reference command r ∈ R is sufficiently smooth.

Assumption 4. The sector boundary condition holds for both state and input quantization, i.e., for
i = 1, 2, · · · , n and j = 1, 2, · · · , m, there exist constant 0 ≤ δu < 1, 0 ≤ δxi < 1, vu ≥ 0 and
vxi ≥ 0 such that

|∆u| = |u−Qu(u)| ≤ δu|u|+ (1− δu)vu,

|∆xi | = |xi −Qxi (xi)| ≤ δxi |xi|+ (1− δxi )vxi .
(3)
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Denote ∆̄xn = [∆x1 , · · · , ∆xn ]
> and from (3), we have

‖∆̄xn‖ ≤ δmax‖xn‖+ vmax, (4)

where δmax = max
i
{δxi} and vmax = max

i
{(1− δxi )vxi}

Remark 1. It should be noted that most common quantizers meet the sector bound property (3),
such as uniform quantizer (in [29]), logarithmic quantizer (in [25]), hysteresis quantizer (in [26])
and compound quantizer (in [27]). The uniform quantizer and logarithmic quantizer are listed
below as two typical examples.
A. Uniform quantizer:

There are various kinds of uniform quantizers in previous papers. We introduce the midriser
uniform quantizer as an example in this paper (see also in [29]).

Q(ξ) = v

(⌊
ξ

v

⌋
+

1
2

)
(5)

where the notation b•c depicts the floor function and v > 0 is a known constant that determines the
quantization dense. The figure of the uniform quantizer (5) is shown in Figure 2. The quantization
error of (5) satisfies

|Q(ξ)− ξ| ≤ v

2
, (6)

which means that the sector boundary condition (3) is true with δ = 0.
B. Logarithmic quantizer:

Figure 2. Diagram of the uniform quantization.
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As another example, the logarithmic quantizer modeled as below is considered, whose diagram
is shown in Figure 3 [25].

Q(ξ) =



ξi
ξi

1 + δ
< ξ ≤ ξi

1− δ

0 0 ≤ ξ ≤ v

1 + δ

−Q(−ξ) ξ < 0.

(7)

where ξi = ρi−1v, i = 1, 2 · · · , v > 0 and ρ = 1+δ
1−δ . The quantization error is

|Q(ξ)− ξ| ≤ min
(

v

1 + δ
,

ξi
1− δ

− ξi

)
≤ δρ|ξ|+ v

1 + δ
. (8)

That is, the inequality (3) is true.

Figure 3. Diagram of the logarithmic quantization.

Under Assumptions 1–4, the control objective is to design an adaptive robust controller
for the uncertain nonlinear system (1) such that all the signals of closed-loop system are
bounded and the output y(t) tracks the reference command r(t) with the states and inputs
quantized by quantizers.

3. Main Results
3.1. Backstepping Based Arc with Quantized States

In this section, treating the quantized errors of state signal as unmodeled dynamics, we
propose an adaptive robust controller based on backstepping method for the plant (1) with
state quantization only. First of all, the following lemma is necessary for the subsequent
analysis.
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Lemma 1. For i = 1, 2, · · · , n and any bounded set Ω ⊂ Ri, ϕ
(j1,··· ,ji)
i (x̄i, t) = ∂j ϕi

∂x
j1
1 ···∂x

ji
i

satisfies

Lipschitz condition in Ω with respect to x̄i where j1, · · · , ji ∈ N+ and j1 + · · ·+ ji ≤ n− i , i.e.,
there exists a constant Lj1,··· ,jiΩ > 0 such that for all ξ1, ξ2 ∈ Ω,∣∣∣ϕ(j1,··· ,ji)

i (ξ1, t)− ϕ
(j1,··· ,ji)
i (ξ2, t)

∣∣∣ ≤ Lj1,··· ,jiΩ‖ξ1 − ξ2‖. (9)

Proof. From Assumption 2, the lemma is true when j1 + · · · + ji = n − i. For any j =
1, 2, · · · , i and j1 + · · ·+ ji < n− i, ϕ

(j1,··· ,ji)
i is continuous differentiable with respect to xj.

Therefore, ∂ϕ
(j1,··· ,ji)
i
∂xj

is continuous and bounded in the set Ω. That is to say, ϕ
(j1,··· ,ji)
i satisfies

Lipschitz condition in Ω with respect to xj. This leads to (9).

Following notations are necessary for the convenience of writing.

φi = ϕi −
i−1
∑

j=1

∂αi−1
∂xqj

ϕj, φqi = φi(x̄qi, t), φ̃i = φi − φqi, D̃i = Di −
i−1
∑

j=1

∂αi−1
∂xqj

Dj,

βi =
∫ t

0

[
∂αi
∂t +

i
∑

j=1

∂αi
∂xqj

(xqj+1 + ϕqjθ + Dj) +
∂αi
∂θ̂

˙̂θ

]
dt,

τi =
i

∑
j=1

φjzj, τqi =
i

∑
j=1

φqjzqj, zi = xi − βi−1, zqi = xqi − αi−1,

where α0 = r(t) and αi, i ≥ 1 is the virtual control law which are designed later; θ̂ is the
estimation value of θ. Subsequently, the design procedures are given below.

Step 1: Consider the first equation of (1). The derivative of z1 is given by

ż1 = ϕ>1 θ + x2 + D1 − ṙ. (10)

Regard x2 as a virtual input, and design for it a virtual control law α1(xq1, θ̂π , t),

α1(xq1, θ̂π , t) = −k1zq1 − φ>q1θ̂π + ṙ− 1
4ε1

h2
1zq1 (11)

where k1 > 0; ε1 > 0; θ̂π = π(θ̂) = [π1(θ̂1), · · · , πp(θ̂p)]> is the smooth projection
mapping vector with bounded derivatives up to order n− 1 such that{

π(θ̂) = θ̂, ∀θ̂ ∈ Ωθi ,

π(θ̂) ∈ Ωθ̂ , ∀θ̂ ∈ Rp;
(12)

where Ωθ̂ = {ν ∈ Rp : θi min − εθi ≤ νi ≤ θi max + εθi}, and εθi > 0 is a small constant. Refer
to [8], h1 = h1(zq1, θ̂π , t) can be chosen as an any sufficiently smooth function such that

h1 ≥‖φq1‖‖(θmax − θmin + 2εθ)‖+ |D1|+ (k1 +Lφ1 θm)|∆x1 |

≥|φ>q1θ̃π |+ |D1|+ |k1∆x1 |+ |φ̃
>
1 θ|,

(13)

where εθ = [εθ1 , · · · , εθp ]
>; θ̃π = θ̂π − θ; Lφ1 is the Lipschitz constant of φ1.

From Lemma 1 and Assumptions 1–3, the following lemma can be obtained sponta-
neously.

Lemma 2. α1, ∂α1
∂x1

, ∂α1
∂t and ∂α1

∂θ̂
satisfy the Lipschitz condition with respect to x1.
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Consider the positive definite continuous function V1 = 1
2 z2

1. From (10) to (13), the
derivative of V1 is

V̇1 =z1(k1∆x1 + D1 − φ>q1θ̃π + φ̃>1 θ − 1
4ε1

h2
1z1)

+ z1z2 − k1z2
1 + z1(β1 − α1) +

1
4ε1

h2
1z1∆x1

≤z1z2 − k1z2
1 + z1(β1 − α1 +

1
4ε1

h2
1∆x1) + ε1.

(14)

Step 2: Consider the second equation of (1). The derivative of z2 is given by

ż2 = φ>2 θ + x3 + D̃2 −
∂α1

∂t
− ∂α1

∂θ̂
˙̂θ − ∂α1

∂xq1
xq2. (15)

Regard x3 as a virtual input, and design for it a virtual control law α2(x̄q2, θ̂π , t),

α2 =− k2zq2 − zq1 − φ>q2θ̂π +
∂α1

∂t
+

∂α1

∂xq1
xq2 +

∂α1

∂θ̂
γτq2 −

1
4ε2

h2
2zq2, (16)

where k2 > 0; ε2 > 0; γ = diag(γ1, · · · , γp) > 0. From Lemma 2 and Assumption 2, φ2

satisfies the Lipschitz condition. Thus, h2 = h2(x̄q2, θ̂π , t) can be chosen as a sufficiently
smooth function such that

h2 ≥|φ>q2θ̃π |+ |D̃2|+ |k2∆x2 |+ |∆x1 |+ |φ̃
>
2 θ|. (17)

Lemma 3. α2, ∂α2
∂x̄2

, ∂α2
∂t and ∂α2

∂θ̂
satisfy the Lipschitz condition with respect to x̄2.

Consider the positive definite continuous function V2 = V1 +
1
2 z2

2. From (14)–(17), the
derivative of V2 satisfies

V̇2 ≤z2z3 − k1z2
1 − k2z2

2 + ε1 + ε2 + z1(β1 − α1 +
1

4ε1
h2

1∆x1)

+ z2(β2 − α2 +
1

4ε2
h2

2∆x2) + z2
∂α1

∂θ̂
(γτq2 − ˙̂θ).

(18)

Step i (2 < i < n): Consider the ith equation of (1). Take the derivative of zi with
respect to t, and we obtain

żi =φ>i θ + xi+1 + D̃i −
∂αi−1

∂t
− ∂αi−1

∂θ̂
˙̂θ −

i−1

∑
j=1

∂αi−1

∂xqj
xqj+1. (19)

Regard xi+1 as a virtual control input and design for it a virtual control law αi(x̄qi, θ̂π , t) as
follows,

αi =− kizqi − zqi−1 − φ>qi θ̂π +
i−1

∑
j=1

∂αi−1

∂xqj
xqj+1 +

(
i−2

∑
j=1

∂αj

∂θ̂
zqj+1

)
γφqi

+
∂αi−1

∂t
+

∂αi−1

∂θ̂
γτqi −

1
4εsi

h2
sizqi,

(20)
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where ki > 0; εi > 0. Similar with h2 in step 2, hi = hi(x̄qi, θ̂π , t) is a sufficiently smooth
function such that

hi ≥|φ>qi θ̃π |+ |D̃i|+ |ki∆xi |+ |∆xi−1 |+ |φ̃
>
i θ|. (21)

Lemma 4. αi,
∂αi
∂x̄i

, ∂αi
∂t and ∂αi

∂θ̂
satisfy the Lipschitz condition with respect to x̄i.

Consider the Lyapunov candidate function Vi = Vi−1 +
1
2 z2

i . From (19)–(21), the
derivative of Vi is

V̇i ≤zizi+1 +
i−1

∑
j=1

∂αj

∂θ̂
zj+1(γτqi − ˙̂θ)−

i

∑
j=1

k jz2
j +

i

∑
j=1

zj(β j − αj +
1

4ε j
h2

j ∆xj)

+
i

∑
j=1

ε j +
i

∑
l=3

l−2

∑
j=1

∂αj

∂θ̂
γφ>qi (zj+1∆xi − zi∆xj+1).

(22)

Step n: Consider the nth equation of (1). The derivative of zn is given by

żn =φ>n θ + u + D̃n −
∂αn−1

∂t
− ∂αn−1

∂θ̂
˙̂θ −

n−1

∑
j=1

∂αn−1

∂xqj
xqj+1. (23)

Design the control law for u as follows:

u =− knzqn − zqn−1 − φ>qn θ̂π +
∂αn−1

∂t
+

n−1

∑
j=1

∂αn−1

∂xqj
xqj+1

+
∂αn−1

∂θ̂
γτqn +

(
n−1

∑
j=1

∂αj

∂θ̂
zqj+1

)
γφqn −

1
4εn

h2
nzqn,

(24)

where kn > 0 and εn > 0. hn satisfies

hn ≥|φ>qn θ̃π |+ |D̃n|+ |kn∆xn |+ |∆xn−1 |+ |φ̃
>
n θ|. (25)

Consider the Lyapunov candidate function Vn = Vn−1 +
1
2 z2

n. From (20), the derivative
of Vn is

V̇n ≤
n−1

∑
j=1

∂αj

∂θ̂
zj+1(γτqn − ˙̂θ)−

n

∑
j=1

k jz2
j +

n−1

∑
j=1

zj(β j − αj +
1

4ε j
h2

j ∆xj)

+
n

∑
j=1

ε j +
n

∑
l=3

l−2

∑
j=1

∂αj

∂θ̂
γφ>qn(zj+1∆xn − zn∆xj+1).

(26)

The above analysis is synthesized into the following theorem:

Theorem 1. Consider the system (1) with quantized state feedback under the control law (24) and
the adaptive law

˙̂θ = γτqn. (27)

There exists a constant L f > 0 such that if ki >
1
2 +L f δmax, the closed-loop system satisfies

Vn(z(t)) ≤ e−2kctVn(z(0)) +
C1

kc
(1− e−2kct) (28)
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where kc = min
i
{ki − 1

2 −L f δmax} > 0;

C1 =
n

∑
j=1

ε j +
1
2
L 2

f (δmax|r|+ vmax)
2. (29)

Furthermore, if the quantization errors are sufficiently small and the external disturbance
fades away after a while, the closed-loop system is asymptotically stable.

Proof. From (26) and the adaptive law (27), we have

V̇n ≤−
n

∑
j=1

k jz2
j +

n

∑
j=1

ε j +
n−1

∑
j=1

zj(β j − αj +
1

4ε j
h2

j ∆xj)

+
n

∑
l=3

l−2

∑
j=1

∂αj

∂θ̂
γφ>qn(zj+1∆xn − zn∆xj+1).

(30)

For all 0 ≤ i < n, it should be noted that βi 6= αi, due to the state quantization. From
Lemmas 2–4, there exists a constant Li > 0, such that

|βi − αi(x̄qi, θ̂π , t)| ≤ |βi − αi(x̄i, θ̂π , t)|+ |αi(x̄i, θ̂π , t)− αi(x̄qi, θ̂π , t)| ≤ Li‖∆̄xi‖ (31)

Denoting Ln = 0 and taking (31) into (30), it becomes

V̇n ≤−
n

∑
j=1

k jz2
j +

n

∑
j=1

ε j +
n

∑
j=1
|zj|(Lj +

1
4ε j

h2
j )‖∆̄xn‖

+

∣∣∣∣∣ n

∑
l=3

l−2

∑
j=1

∂αj

∂θ̂
γφqi(zj+1 − zn)

∣∣∣∣∣‖∆̄xn‖

=−
n

∑
j=1

k jz2
j +

n

∑
j=1

ε j + f ‖∆̄xn‖.

(32)

where

f =

∣∣∣∣∣ n

∑
l=3

l−2

∑
j=1

∂αj

∂θ̂
γφqi(zj+1 − zn)

∣∣∣∣∣+ n

∑
j=1
|zj|(Lj +

1
4ε j

h2
j ).

It is obvious that f satisfies Lipschitz condition with respect to z̄n. Subsequently, noting
that f (0) = f |z̄n=0 = 0, there exists a constant L f > 0, such that

| f (z̄n)| =| f (z̄n)− f (0)| ≤ L f ‖z̄n‖. (33)

Invoking (33), (32) becomes

V̇n ≤ −
n

∑
j=1

k jz2
j +

n

∑
j=1

ε j +L f ‖z̄n‖‖∆̄xn‖ ≤ −
n

∑
j=1

(k j −
1
2
−L f δmax)z2

j + C1, (34)

This leads to (28).
The remainder of the theorem can be proved directly based on the results in [8].

Remark 2. As mentioned above, the ARC method in [8] aims at the strict-feedback system with
full state feedback, and it is not suitable for quantized state feedback. The proposed approach is
based on the adaptive robust control method and can be regarded as an extension of the ARC method.
Ignoring the state quantization, the designed controller (24) degrades into the ARC law proposed
in [8], in which the bounds that the states of the system converge to and the convergence rate are
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determined by the control parameters ki and εi; the converge rates of the parameter estimators are
determined by the adaptive parameter matrix γ. Moreover, βi = αi, i.e., the Lyapunov function
Vn(t) becomes the traditional form in [5,8].

Remark 3. (28) implies that the closed-loop system is UUB. Moreover, with the increase of t, the
tracking error is exponentially converged into a small range around the origin point with the radius
no more than

√
C1/kc. From (29), the tracking performance can be improved by decreasing the

pregiven constants εi or the states quantization errors.

3.2. Backstepping-Based Arc with Quantized States and Input

In this section, we concern the closed-loop system with quantized signal transmission.
The results are synthesized into the following theorem:

Theorem 2. Choose ki > 1+L f δmax + δuLu. The plant (1) under the quantified form of adaptive
robust controller

uq = Qu(u) (35)

and the adaptive law (27). If Assumptions 1–4 hold, the closed-loop system is UUB. In addition,
the tracking performance can be improved by decreasing the pregiven constants εi or the signal
quantization errors.

Proof. According to (24) and the Lemmas 1–4, u satisfies the Lipschitz condition with
respect to z̄n. Thus, there exists a constant Lu > 0, such that

|u| = |u(z̄n)− u(0)| ≤ Lu‖z̄n‖. (36)

Consider the derivative of Vn along the new trajectory as below.

V̇n =V̇n−1 + znφ>n θ + znu + znD̃n − zn
∂αn−1

∂t

− zn
∂αn−1

∂θ̂
˙̂θ − zn

n−1

∑
j=1

∂αn−1

∂xqj
xqj+1 + zn(uq − u).

(37)

Invoking (3), (34) and (36), (37) becomes

V̇n ≤− kc

n

∑
j=1

z2
j + C1 + |zn|[δu|u|+ (1− δu)vu]

≤− kc

n

∑
j=1

z2
j + C1 + δuLu‖z̄n‖2 + (1− δu)vu‖z̄n‖

≤− (kc − δuLu −
1
2
)

n

∑
j=1

z2
j + C2.

(38)

where C2 = C1 +
1
2 (1− δu)2v2

u. The first item of (38) is negative definite, and the second
item is bounded. Thus, the closed-loop is UUB. In addition, the tracking performance can
be improved by decreasing C2, which is related to the pre-given constants εi or the signal
quantization errors. This completes the proof.

4. Results Validation

In order to verify the theoretical conclusion in Section 3, a contrast experiment is
carried out in this section for a three-order nonlinear strict-feedback system under both
uncertain parameters and disturbance, which can describe the dynamic of a practical
linear-motor-driven gantry system.
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
ẋ1 = x2 + D1(x1, t)

ẋ2 = x3 + ϕ>1 (~x)θ + D2(x1, x2, t)

ẋ3 = u + ϕ>2 (~x)θ + D3(x1, x2, x3, t)

(39)

where the states x1, x2 and x3 are the position, velocity and electric current of the system;
the input signal u is the voltage applied to the motor; θ = [B, A f , E, R]> stands for the
vector of unknown parameters; B, A f , E and R represent the viscous coefficient, Coulomb
coefficient, inductance factor and resistance, respectively; ϕ1 = [−x2,− arctan(x2), 0, 0]>

and ϕ2 = [0, 0,−x2,−x3]
> are known function vectors. To verify the effectiveness of the

proposed control approach under strong disturbance, the unknown functions are set as
D1 = d1 sin(x1t), D2 = d2(1− cos(x1x2t)) and D3 = d3 tanh(x3).

For this simulation, the time interval is T = 0.001. The parameter settings of the
system uncertainties, initial state values, quantizers and control schemes are shown in
Tables 1–4.

Table 1. The settings of the system uncertainties.

B A f E R d1 d2 d3

Value 0.15 0.05 0.8 10 0.05 0.02 0.05

Bound [0.05,0.5] [0.02,0.5] [0.2,1] [1,10] - - -

Table 2. The settings of the initial values.

B̂(0) Â f (0) Ê(0) R̂(0) x1(0) x2(0) x3(0)

Value 0.1 0.1 1 5 0 0 0

Table 3. The parameter settings of the quantizers.

Uniform quantizer
State quantizer vx1 = vx2 = vx3 = 0.05

Input quantizer vu = 1

Logarithmic quantizer
State quantizer

vx1 = vx2 = vx3 = 0.01

δx1 = δx2 = δx3 = 0.05

Input quantizer
vu = 1

δu = 0.1

Table 4. The parameter settings of the control scheme.

Parameter Value Parameter Value

Control law

k1 3 ε1 0.2

k2 1 ε2 0.2

k3 5 ε3 0.2

Adaptive law

γ1 0.02 εθ1 0.01

γ2 0.02 εθ2 0.01

γ3 0.02 εθ3 0.01

γ4 5 εθ4 0.1
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In order to test both the stabilization and tracking performance under the designed
controller with the uniform and logarithmic quantizer, respectively, the testings in Table 5
are carried out in this section.

Table 5. Settings of the testings.

Testings Quantizer Trajectory

T1 Uniform quantizer r(t) ≡ 1

T2 Logarithmic quantizer r(t) ≡ 1

T3 Uniform quantizer r(t) = sin(t)

T4 Logarithmic quantizer r(t) = sin(t)

The results of Testings T1–T2 are shown in Figures 4–6, which illustrate the tracking
performance of Testings T1–T2 and their inputs, respectively. From Figures 4 and 5, the
closed-loop system works well and is stable under the designed control approach in spite
of strong uncertainties. Moreover, the system responds quickly to the desired steady-
state value and converges into a small neighborhood around it whether using uniform
quantizers or logarithmic quantizers, which validates the effectiveness of the proposed
method on a stabilization mission.

Figures 7–10 display the results of Testings T3–T4. Based on Figures 7–9, the responses
of the system to a sinusoidal signal are all stable regardless of employing uniform quantizers
or logarithmic quantizers. In addition, although strong disturbances are applied to the
system, the stability of the system is not very affected, and the adaptive laws help the closed-
loop system achieve a better performance over time. These results verify the effectiveness
of the proposed method on a tracking task.
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Figure 4. x1 and xq1 of Testings T1.
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Figure 5. x1 and xq1 of Testings T2.
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Figure 6. The input signals of Testings T1–T2.
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Figure 7. x1 and xq1 of Testings T3.
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Figure 8. x1 and xq1 of Testings T4.
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Figure 9. The errors z1 of Testings T3–T4.
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Figure 10. The input signals of Testings T3–T4.
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5. Conclusions

In this article, a class of networked nonlinear systems in strict-feedback form is
studied and a quantized backstepping adaptive robust control method, which inherits the
advantages of ARC and backstepping methods. In order to analyze the effectiveness of
the proposed method, we construct a novel Lyapunov candidate function V(t) which is
differentiable and positive definite, although the virtual control law is nondifferentiable. By
analyzing the novel positive definite function, the closed-loop system under the designed
controller is uniformly ultimate bounded, and the tracking error is related to a pregiven
constant and quantization errors. A backstepping ARC scheme is designed for the plant
with quantized states and input. The conclusions are also verified by the simulation results.
However, some shortcomings of ARC and backstepping methods are also retained, such
as the explosion of terms caused by the backstepping method and the nontrue parameter
estimation of the ARC law, which lights a path for our future research.
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