77 research outputs found

    A NEW METHOD TO CONTROL THE REGIONAL STRATA MOVEMENT OF SUPER-THICK WEAK CEMENTATION OVERBURDEN IN DEEP MINING

    Get PDF
    In the western of china, the deep mining area with super-thick and weak cementation overburden is vast, sparsely populated and the ecological environment is extremely fragile. With the large-scale exploitation of deep coal resources, it is inevitable to face green mining problem, whose essence is the surface subsidence control. Therefore, it is necessary to study the control technology for the regional mining based on the evolution law of subsidence movement and energy-polling of super-thick and weak cementation overburden, and put forward the economically design scheme that can control strata movement and surface subsidence in a certain degree. Based on the key strata control theory, this paper puts forward the subsidence control scheme of partial filling -partial caving in multi-working face coordinated mining, and further studies its control mechanism through the numerical simulation and then analyzes the control effect of the strata movement and energy-polling in the fully caving mining, backfill mining, wide strip skip-mining and mixed filling mining method etc., the following conclusions are detailed as follows: (1) The maximum value of energy-polling occurs on the coal pillars or on both sides of goaf. With the width of goaf, the maximum value of energy-polling increases in a parabola. (2) In the partial filling-partial caving multiple working faces coordinated mining based on the main key stratum, the stress distribution of the composite backfill in the filling working face is parabolic, and it is high on both sides and low in the middle. Moreover, in the composite backfill, the stress concentration degree of a outside coal pillar is greater than that of the inside coal pillar. (3)The control mechanism of partial filling-partial caving harmonious mining based on main key layer structure is the double-control cooperative deformation system, formed by the composite backfill and the main and sub-key layers structure. They jointly control the movement and energy accumulation of overlying strata by greatly reducing the effective space to transmit upward, and absorb the wave subsidence trend of the overburden until it develops into a single flat subsidence basin. (4) Considering the recovery rate, pillar rate, area filling rate, technical difficulty and subsidence coefficient etc., the partial filling-partial caving multiple working faces coordinated mining based on the main key stratum is the most cost-effective mining method to control surface subsidence. This paper takes a guiding role in controlling the regional strata movement and surface subsidence of deep mining with super-thick and weak cementation overburden

    Trypanosoma congolense Infections: Induced Nitric Oxide Inhibits Parasite Growth In Vivo

    Get PDF
    Wild-type (WT) C57BL/6 mice infected intraperitoneally with 5 × 106 Trypanosoma congolense survive for more than 30 days. C57BL/6 mice deficient in inducible nitric oxide synthase (iNOS−/−) and infected with 103 or 5 × 106 parasites do not control the parasitemia and survive for only 14 ± 7 or 6.8 ± 0.1 days, respectively. Bloodstream trypanosomes of iNOS−/− mice infected with 5 × 106 T. congolense had a significantly higher ratio of organisms in the S+G2+M phases of the cell cycle than trypanosomes in WT mice. We have reported that IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages inhibits nitric oxide (NO) synthesis via CR3 (CD11b/CD18). Here, we show that during the first parasitemia, but not at later stages of infection, T. congolense-infected CD11b−/− mice produce more NO and have a significantly lower parasitemia than infected WT mice. We conclude that induced NO contributes to the control of parasitemia by inhibiting the growth of the trypanosomes

    Characterization of Major Surface Protease Homologues of Trypanosoma congolense

    Get PDF
    Trypanosomes encode a family of proteins known as Major Surface Metalloproteases (MSPs). We have identified six putative MSPs encoded within the partially sequenced T. congolense genome. Phylogenic analysis indicates that T. congolense MSPs belong to five subfamilies that are conserved among African trypanosome species. Molecular modeling, based on the known structure of Leishmania Major GP63, reveals subfamily-specific structural variations around the putative active site despite conservation of overall structure, suggesting that each MSP subfamily has evolved to recognize distinct substrates. We have cloned and purified a protein encoding the amino-terminal domain of the T. congolense homologue TcoMSP-D (most closely related to Leishmania GP63). We detect TcoMSP-D in the serum of T. congolense-infected mice. Mice immunized with the amino-terminal domain of TcoMSP-D generate a persisting IgG1 antibody response. Surprisingly, a low-dose challenge of immunized mice with T. congolense significantly increases susceptibility to infection, indicating that immunity to TcoMSP-D is a factor affecting virulence

    Hybrid algorithms to solve linear systems of equations with limited qubit resources

    Full text link
    The solution of linear systems of equations is a very frequent operation and thus important in many fields. The complexity using classical methods increases linearly with the size of equations. The HHL algorithm proposed by Harrow et al. achieves exponential acceleration compared with the best classical algorithm. However, it has a relatively high demand for qubit resources and the solution x\left| x \right\rangle is in a normalized form. Assuming that the eigenvalues of the coefficient matrix of the linear systems of equations can be represented perfectly by finite binary number strings, three hybrid iterative phase estimation algorithms (HIPEA) are designed based on the iterative phase estimation algorithm in this paper. The complexity is transferred to the measurement operation in an iterative way, and thus the demand of qubit resources is reduced in our hybrid algorithms. Moreover, the solution is stored in a classical register instead of a quantum register, so the exact unnormalized solution can be obtained. The required qubit resources in the three HIPEA algorithms are different. HIPEA-1 only needs one single ancillary qubit. The number of ancillary qubits in HIPEA-2 is equal to the number of nondegenerate eigenvalues of the coefficient matrix of linear systems of equations. HIPEA-3 is designed with a flexible number of ancillary qubits. The HIPEA algorithms proposed in this paper broadens the application range of quantum computation in solving linear systems of equations by avoiding the problem that quantum programs may not be used to solve linear systems of equations due to the lack of qubit resources.Comment: 22 pages, 6 figures, 6 tables, 48 equation

    Evolution Feature Oriented Model Driven Product Line Engineering Approach for Synergistic and Dynamic Service Evolution in Clouds

    Get PDF
    The proposed research will focus on developing a novel approach to solve Software Service Evolution problems in Computing Clouds. The approach will support dynamic evolution of the software service in clouds via a set of discovered evolution patterns. An initial survey informed us that such an approach does not exist yet and is in urgent need. Evolution Requirement can be classified into evolution features; researchers can describe the whole requirement by using evolution feature typology, the typology will define the relation and dependency between each features. After the evolution feature typology has been constructed, evolution model will be created to make the evolution more specific. Aspect oriented approach can be used for enhance evolution feature-model modularity. Aspect template code generation technique will be used for model transformation in the end. Product Line Engineering contains all the essential components for driving the whole evolution process

    Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes

    Get PDF
    [EN] All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits. The all-flesh type of tomato fruits is caused by mutation of the MBP3 gene, however, knocking down MBP3 in certain genotypes also affect plant and fruit development. Here, the authors show that a natural mutation of AGL11, a close homolog of MBP3, is responsible for the phenotypic divergence.The authors are grateful to L. Lemonnier and D. Saint-Martin for transformation and cultivation of tomato plants and GeT-PlaGe core facility (INRAe Toulouse) for ChIP deep sequencing. The authors also want to thank Dr. Christian Chevalier (INRAE et Univsersite de Bordeaux) for helping in analyzing genes related to cell cycle, cell division, and endoreduplication in tomato. This research was supported by the EU H2020 TomGEM 679796 and HARNESSTOM 101000716 projects.Huang, B.; Hu, G.; Wang, K.; Frasse, P.; Maza, E.; Djari, A.; Deng, W.... (2021). Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications. 12(1):1-14. https://doi.org/10.1038/s41467-021-27117-711412

    Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    Get PDF
    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade gathers AGAMOUS-like genes which are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3 , both displaying high expression levels in seeds and in central tissues of young fruits. The potential effects of Sl-AGL11 on fruit development were addressed through RNAi silencing and ectopic expression strategies. Sl-AGL11-down-regulated tomato lines failed to show obvious phenotypes except a slight reduction in seed size. In contrast, Sl-AGL11 overexpression triggered dramatic modifications of flower and fruit structure that include: the conversion of sepals into fleshy organs undergoing ethylene-dependent ripening, a placenta hypertrophy to the detriment of locular space, starch and sugar accumulation, and an extreme softening that occurs well before the onset of ripening. RNA-Seq transcriptomic profiling high-lighted substantial metabolic reprogramming occurring in sepals and fruits, with major impacts on cell wall-related genes. While several Sl-AGL11-related phenotypes are reminiscent of class C MADS-box genes (TAG1 and TAGL1), the modifications observed on the placenta and cell wall and the Sl-AGL11 expression pattern suggest an action of this class D MADS-box factor on early fleshy fruit development

    Intradermal Infections of Mice by Low Numbers of African Trypanosomes Are Controlled by Innate Resistance but Enhance Susceptibility to Reinfection

    Get PDF
    Antibodies are required to control blood-stage forms of African trypanosomes in humans and animals. Here, we report that intradermal infections by low numbers of African trypanosomes are controlled by innate resistance but prime the adaptive immune response to increase susceptibility to a subsequent challenge. Mice were found 100 times more resistant to intradermal infections by Trypanosoma congolense or Trypanosoma brucei than to intraperitoneal infections. B cell–deficient and RAG2−/− mice are as resistant as wild-type mice to intradermal infections, whereas inducible nitric oxide synthase (iNOS)−/− mice and wild-type mice treated with antibody to tumor necrosis factor (TNF) α are more susceptible. We conclude that primary intradermal infections with low numbers of parasites are controlled by innate defense mediated by induced nitric oxide (NO). CD1d−/− and major histocompatibility complex (MHC) class II−/− mice are more resistant than wild-type mice to primary intradermal infections. Trypanosome-specific spleen cells, as shown by cytokine production, are primed as early as 24 h after intradermal infection. Infecting mice intradermally with low numbers of parasites, or injecting them intradermally with a trypanosomal lysate, makes mice more susceptible to an intradermal challenge. We suggest that intradermal infections with low numbers of trypanosomes or injections with trypanosomal lysates prime the adaptive immune system to suppress protective immunity to an intradermal challenge

    GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

    Get PDF
    Background: Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups. Methods: In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results: A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion: In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary
    corecore