7 research outputs found

    Magnetization reversal by injection and transfer of spin: experiments and theory

    Full text link
    Reversing the magnetization of a ferromagnet by spin transfer from a current, rather than by applying a magnetic field, is the central idea of an extensive current research. After a review of our experiments of current-induced magnetization reversal in Co/Cu/Co trilayered pillars, we present the model we have worked out for the calculation of the current-induced torque and the interpretation of the experiments

    Micromagnetic simulations of absoption spectra

    Full text link
    Further development of a previously introduced method for numerically simulating magnetic spin waves is presented. Together with significant improvements in speed, the method now allows one to calculate the energy absorbed by the various modes excited by a position- and time-dependent H1 field in a ferromagnetic body of arbitrary shape in the presence of a (uniform or non uniform) static H0 field as well as the internal exchange and anisotropy fields. The method is applied to the case of the single vortex state in a thin disc, a ring, and various square slabs, for which the absorption spectra are calculated and the most strongly excited resonance modes are identified

    Theory of Current-Induced Magnetization Precession

    Full text link
    We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate that unpolarized current flow from a non-magnet into a ferromagnet can produce a precession-type instability of the magnetization. The fundamental origin of the instability is the difference in conductivity between majority spins and minority spins in the ferromagnet. This leads to spin accumulation and spin currents that carry angular momentum across the interface. The component of this angular momentum perpendicular to the magnetization drives precessional motion that is opposed by Gilbert damping. Neglecting magnetic anisotropy and magnetostatics, our approximate analytic and exact numerical solutions using realistic values for the material parameters show (for both semi-infinite and thin film geometries) that a linear instability occurs when both the current density and the excitation wave vector parallel to the interface are neither too small nor too large. For many aspects of the problem, the variation of the magnetization in the direction of the current flows makes an important contribution.Comment: Submitted to Physical Review

    Magnetic vortex oscillator driven by dc spin-polarized current

    Full text link
    Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the dynamics of nanomagnets. A peculiar consequence of this spin-torque, the ability to induce persistent oscillations of a nanomagnet by applying a dc current, has previously been reported only for spatially uniform nanomagnets. Here we demonstrate that a quintessentially nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized dc current. Comparison to micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz, making these highly compact spin-torque vortex oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure

    SEAFP, Safety and Environmental Assessment of Fusion Power, Final Report

    No full text
    The Safety and Environmental Assessment of Fusion Power (SEAFP) was undertaken for the Commission of the European Union in the framework of the Fusion Programme 1990-94. Its terms of reference were in accordance with the programme decision of the Council of Ministers which followed a request by the European Parliament and a recommendation of the Fusion Programme Evaluation Board. The SEAFP is part of an ongoing effort to consider the safety and environmental aspects of fusion power. SEAFP was carried out by the NET Team, the Euratom/UKAEA Association, and by Industry, with contributions from other Associated Laboratories, the Joint Research Centre and the Canadian fusion programme
    corecore